Thermoactivation Analysis of Temperature Dependence of a Flow Stress in Solid Solutions with a B.C.C. Lattice

S. O. Firstov, T. G. Rogul, M. O. Krapivka, S. I. Chugunova

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 24.10.2017. Download: PDF

Comparative analysis of the yield-stress temperature dependences for polycomponent and binary solid solutions with a b.c.c. lattice (AlCrFeCoNi, AlTiVCrNbMo, Ti$_{25}$Zr$_{25}$Hf$_{25}$Nb$_{12.5}$Ta$_{12.5}$, VNbMoTaW, Fe–Cr, Fe–Mo, Fe–W, Cr–Fe), and some pure b.c.c. metals is carried out. Using the thermoactivation analysis, the values of the activation energy of dislocation movement and the activation volume are calculated. As shown, for the binary and polycomponent solid solutions, an increase in athermal component of a flow stress is characteristic in comparison with pure b.c.c. metals. In this case, in comparison with pure metals, multicomponent solid solutions demonstrate an increasing of the thermal component, while for binary b.c.c. alloys, there is a weakening of the temperature dependence of a flow stress. The nature of this effect is discussed. As shown, high athermal solid-solution hardening of polycomponent solid solutions can be associated with a change of the Burgers vector (by both the length and the direction) along the dislocation line and an appearance of a component perpendicular to the glide plane. The observed increase of the flow-stress thermal component in polycomponent b.c.c. solid solutions is presumably due to the presence of a high concentration of points of fixation of the thermally activated dislocation segment by atoms of elements, which have a high level of size-elastic discrepancy in comparison with an average value for the alloy.

Key words: critical shear stress, yield stress, activation energy for dislocation motion, activation volume.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i02/0219.html

DOI: https://doi.org/10.15407/mfint.40.02.0219

PACS: 61.72.Hh, 62.20.F-, 62.40.+i, 65.40.De, 81.40.Cd, 81.40.Lm, 83.60.La

Citation: S. O. Firstov, T. G. Rogul, M. O. Krapivka, and S. I. Chugunova, Thermoactivation Analysis of Temperature Dependence of a Flow Stress in Solid Solutions with a B.C.C. Lattice, Metallofiz. Noveishie Tekhnol., 40, No. 2: 219—234 (2018) (in Russian)


REFERENCES
  1. S. O. Firstov and T. G. Rogul, Metallofiz. Noveishie Tekhnol., 39, No. 1: 33 (2017) (in Russian). Crossref
  2. C. A. Firstov, T. G. Rogul', N. A. Krapivka, S. S. Ponomarev, V. N. Tkach, V. V. Kovylyaev, V. F. Gorban', and M. V. Karpets, Deformatsiya i Razrushenie Materialov, No. 2: 9 (2013) (in Russian).
  3. S. A. Firstov, V. F. Gorban', N. A. Krapivka, N. I. Danilenko, and V. N. Nazarenko, Voprosy Atomnoy Nauki i Tekhniki (VANT), No. 2 (96): 178 (2015) (in Russian).
  4. O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, Intermetallics, 19: 698 (2011). Crossref
  5. J. R. Stephens and W. R. Witzke, NASA Scientific and Technical Publication (Washington, D. C.: Lewis Research Center National Aeronautics and Space Administration: 1976).
  6. Yu. V. Mil'man and V. I. Trefilov, O Fizicheskoy Prirode Temperaturnoy Zavisimosti Predela Tekuchesti. Mekhanizm Razrusheniya Metallov (Kiev: Naukova Dumka: 1966), p. 59 (in Russian).
  7. D. Tabor, The Hardness of Metals (Oxford, UK: Clarendon Press.: 1951), p. 102.
  8. V. I. Trefilov, Yu. V. Mil'man, and S. A. Firstov, Fizicheskie Osnovy Prochnosti Tugoplavkikh Metallov (Kiev: Naukova Dumka: 1975) (in Russian).
  9. E. V. Savitskiy and G. S. Burkhanov, Metallovedenie Tugoplavkikh Metallov i Splavov (Moscow: Nauka: 1967) (in Russian).
  10. T. E. Tietz and J. W. Wilson, Tugoplavkie Metally i Splavy [Refractory Metals and Alloys] (Moscow: Metallurgiya: 1969) (Russian translation).
  11. Fizicheskoe Metallovedenie (Eds. R. W. Cahn and P. Haasen) (Moscow: Metallurgiya: 1987), vol. 3 (Russian translation).
  12. The Periodic Table of the Elements, WebElements: http://www.webelements.com
  13. N. T. Gudtsov and I. G. Lozinskiy, Zhurnal Tekhnicheskoy Fiziki, No. 8 (22): 1249 (1952) (in Russian).
  14. Yu. V. Milman, O. E. Sklyarov, and A. P. Udovenko, Trudy Instituta Metrologii SSSR, Iss. 91 (151): 167 (1967) (in Russian).
  15. W. C. Leslie, Metal. Tans., 3, No. 1: 5 (1972).
  16. E. Pink and R. J. Arsenault, Prog. Mater. Sci., 24: 1 (1980). Crossref
  17. D. Leeman and M. E. Fine, Metall. Trans., 5, No. 6: 1331 (1974). Crossref
  18. J. R. Stephens and W. R. Witzke, J. Less-Common Metals, 41: 265 (1975). Crossref
  19. O. M. Barabash and Yu. N. Koval', Struktura i Svoystva Metallov i Splavov (Kiev: Naukova Dumka: 1986) (in Russian).
  20. S. A. Firstov, T. G. Rogul', N. A. Krapivka, S. S. Ponomarev, V. V. Kovylyaev, N. I. Danilenko, N. D. Bega, V. I. Danilenko, and S. I. Chugunova, Poroshkovaya Metallurgiya, Nos. 3/4 (508): 127 (2016) (in Russian).
  21. H. Conrad, Struktura i Mekhanicheskie Svoystva Metallov [Structure and Mechanical Properties of Metals] (Moscow: Metallurgiya: 1967) (Russian translation).