Effect of Nano-TiO$_2$ Particles on Wear and Corrosion Behaviour of AA6063 Surface Composite Fabricated by Friction Stir Processing

D. Muthukrishnan, A. N. Balaji, G. R. Raghav

K.L.N. College of Engineering, Department of Mechanical Engineering, 630612 Pottapalayam, Sivagangai District, Tamil Nadu, India

Received: 17.11.2017. Download: PDF

In this investigation, the effect of nano-TiO$_2$ particles on wear and corrosion behaviour of AA6063 surface nanocomposites produced $via$ friction stir processing (FSP) was studied. Microstructure analysis of fabricated surface nanocomposites was done with scanning electron microscope and found that TiO$_2$ nanoparticles are uniformly dispersed in the stir zone. The surface nanocomposites were characterized by hardness, wear and corrosion tests. The results revealed that the microhardness increases due to the presence of hard TiO$_2$ nanoparticles than as AA6063 alloy. The FSPed surface nanocomposites exhibited low frictional coefficient, excellent wear resistance and adequate corrosion resistance at 40 mm/min and as compared to that of the as cast alloy.

Key words: AA6063 alloy, TiO$_2$ nanoparticles, friction stir processing, surface nanocomposites, microstructure, microhardness, wear behaviour, corrosion behaviour.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i03/0397.html

DOI: https://doi.org/10.15407/mfint.40.03.0397

PACS: 61.05.cp, 62.20.Qp, 62.23.Pq, 68.37.Hk, 81.16.Rf, 81.40.Pq, 81.65.Kn

Citation: D. Muthukrishnan, A. N. Balaji, and G. R. Raghav, Effect of Nano-TiO$_2$ Particles on Wear and Corrosion Behaviour of AA6063 Surface Composite Fabricated by Friction Stir Processing, Metallofiz. Noveishie Tekhnol., 40, No. 3: 397—409 (2018)


REFERENCES
  1. L. Karthikeyan and V. S. Senthilkumar, Mater. Des., 32: 3085 (2011). Crossref
  2. B. Zahmatkesh and M. H. Enayati, Mater. Sci. Eng. A, 527: 6734 (2010). Crossref
  3. Y. Mazaheri, F. Karimzadeh, and M. H. Enayati, J. Mater. Process. Technol., 211: 1614 (2011). Crossref
  4. G. M. Reddy and K. S. Rao, Trans. Indian Inst. Metals, 63: 793 (2010). Crossref
  5. Z. Y. Ma, Metall. Mater. Trans. A, 39: 642 (2008). Crossref
  6. R. S. Mishra and N. Kumar, Friction Stir Welding and Processing: Science and Engineering (London: Springer: 2014). Crossref
  7. P. B. Berbon, W. H. Bingel, R. S. Mishra, C. C. Bampton, and M. W. Mahoney, Scr. Mater., 44: 61 (2001). Crossref
  8. A. D. Ehab, M. E. Magdy, and S. Mahmoud, Mater. Des., 31: 1231 (2010). Crossref
  9. S. R. Sharma, Z. Y. Ma, and R. S. Mishra, Scr. Mater., 51: 237 (2004). Crossref
  10. Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, Mater. Sci. Eng. A, 419: 344 (2006). Crossref
  11. M. Narimani, B. Lotfi, and Z. Sadeghian, Surf. Coat. Technol., 285: 1 (2016). Crossref
  12. R. S. Mishra, P. S. De, and N. Kumar, Friction Stir Welding and Processing: Science and Engineering (Springer: 2014). Crossref
  13. P. Lakshmanan, K. Kalaichelvan, and T. Sornakumar, Mater. Manufact. Processes, 31: 1275 (2016). Crossref
  14. F. Khodabakhshi, A. Simchi, A. H. Kokabi, M. Sadeghahmadi, and A. P. Gerlich, Mater. Sci. Technol., 31: 4 (2015). Crossref
  15. N. Yuvaraj, S. Aravindan, and Vipin, J. Mater.Res. Technol., 4: 398 (2015). Crossref
  16. R. Srinivasu, A. S. Rao, G. M. Reddy, and K. S. Rao, Def. Technol., 11: 140 (2015). Crossref
  17. L. Chen, H. Konishi, A. Fehrenbacher, and C. Ma, Scr. Mater., 67: 29 (2012). Crossref
  18. A. Devaraju, A. Kumar, A. Kumaraswamy, and B. Kotiveerachari, Mater. Des., 51: 331 (2013). Crossref
  19. S. K. Singh, R. J. Immanuel, S. Babu, and S. K. Panigrahi, J. Mater. Process. Technol., 236: 252 (2016). Crossref
  20. L. S. Raju and A. Kumar, Def. Technol., 10: 375 (2014). Crossref
  21. D. G. Mallapur, K. R. Udupa, and S. A. Kori, Tribology—Materials, Surfaces Interfaces, 5: 34 (2013). Crossref
  22. R. Harichandran and N. Selvakumar, Arch. Civ. Mech. Eng., 16: 147 (2016). Crossref