Influence of Partial Substitution of Manganese with Chromium on Structure and Kinetics of Hydrogenation of an Alloy Based on the (Ti, Zr)(V, Mn)$_{2-x}$ Intermetallide

T. V. Pryadko, V. A. Dekhtyarenko

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 08.12.2017. Download: PDF

The microstructure and phase composition of the cast alloy based on the (Ti, Zr)(V, Cr, Mn)$_{2-x}$ intermetallide as well as the phase composition of the hydrogenation product are studied by optical microscopy and x-ray phase analysis. As found, the partial substitution of manganese with chromium does not lead to a change in the structure and phase composition of the alloy that makes it possible to synthesize a hydride with a hydrogen capacity of 2.08% wt. at room temperature and a pressure of 0.21 MPa. As also revealed, the chromium reduces the thermal stability of the resulting hydride, the decomposition of which begins at room temperature, and the maximum reversible capacity is reached at 300°C.

Key words: Laves phase, hydrogenation, dehydrogenation, hydrogen capacity.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i05/0649.html

DOI: https://doi.org/10.15407/mfint.40.05.0649

PACS: 61.66.Dk, 68.43.Mn, 68.43.Nr, 81.05.Je, 82.30.Rs, 82.80.Ms, 88.30.rd

Citation: T. V. Pryadko and V. A. Dekhtyarenko, Influence of Partial Substitution of Manganese with Chromium on Structure and Kinetics of Hydrogenation of an Alloy Based on the (Ti, Zr)(V, Mn)$_{2-x}$ Intermetallide, Metallofiz. Noveishie Tekhnol., 40, No. 5: 649—660 (2018) (in Russian)


REFERENCES
  1. H. Oesterreicher and H. Bittner, Mat. Res. Bull., 13: 83 (1978). Crossref
  2. J. L. Bobet, B. Chevalier, and T. B. Darrie, Intermetallics, 8, No. 4: 359 (2000). Crossref
  3. H. Taizhong, W. Zhu, Y. Xuebin, C. Jinzhou, X. BaoJia, H. Tiesheng, and X. Naixin, Intermetallics, 12, No. 1: 91 (2004). Crossref
  4. D. P. Shoemaker and C. B. Shoemaker, J. Less-Common Metals, 68, No. 1: 43 (1979). Crossref
  5. Y. Moriwaki, T. Gamo, and T. Iwata, J. Less-Common Metals, 172–174, No. 3: 1028 (1991). Crossref
  6. Y. Morita, T. Gamo, and S. Kuranaka, J. Alloys Compd., 253–254: 29 (1997). Crossref
  7. X. Yu, B. Xia, Z. Wu, and N. Xu, Mater. Sci. Eng. A, 373, Nos. 1–2: 303 (2004). Crossref
  8. J. L. Bobet and B. Darriet, Int. J. Hydrogen Energy, 25, No. 8: 767 (2000). Crossref
  9. M. Kazemipour, H. Salimijazi, A. Saidi, A. Saatchi, and A. Arefarjmand, Int. J. Hydrogen Energy, 39, No. 24: 12784 (2014). Crossref
  10. Y. Zhang, J. Li, T. Zhang, T. Wu, H. Kou, and X. Xue, J. Alloys Compd., 694: 300 (2017). Crossref
  11. S.-W. Cho, G. Shim, G.-S. Choi, C.-N. Park, J.-H. Yoo, and J. Choi, J. Alloys Compd., 430, Nos. 1–2: 136 (2007). Crossref
  12. K. Young, T. Ouchi, J. Nei, and L. Wang, J. Alloys Compd., 654: 216 (2016). Crossref
  13. S.-W. Cho, C.-S. Han, C.-N. Park, and E. Akiba, J. Alloys Compd., 289, Nos. 1–2: 244 (1999). Crossref
  14. X. Yu, B. Xia, Z. Wu, and N. Xu, Mater. Sci. Eng. A, 373, Nos. 1–2: 303 (2004). Crossref
  15. X. B. Yu, Z. Wu, B. J. Xia, and N. X. Xu, J. Alloys Compd., 372, Nos. 1–2: 272 (2004). Crossref
  16. M. Yoshida and E. Akiba, J. Alloys Compd., 224, No. 1: 121 (1995). Crossref
  17. M. J. Choi, H. S. Hong, and K. S. Lee, J. Alloys Compd., 358, Nos. 1–2: 306 (2003). Crossref
  18. X. Y. Song, Y. Chen, and Z. Zhang, Int. J. Hydrogen Energy, 25, No. 7: 649 (2000). Crossref
  19. J. G. Park, H. Y. Jang, and S. C. Han, Mater. Sci. Eng. A, 329–331: 351 (2002). Crossref
  20. I. Jacob, A. Stern, and A. Moran, J. Less-Common Metals, 73, No. 2: 369 (1980). Crossref
  21. V. G. Ivanchenko, V. A. Dekhtyarenko, and T. V. Pryadko, Poroshkovaya Metallurgiya, Nos. 5/6: 129 (2013) (in Ukrainian).
  22. V. A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol., 37, No. 5: 683 (2015) (in Russian). Crossref
  23. K. Young, T. Ouchi, J. Nei, and T. Meng, J. Power Sources, 281: 164 (2015). Crossref
  24. K. Young, D. F. Wong, and L. Wang, J. Alloys Compd., 622: 885 (2015). Crossref
  25. X. B. Yu, J. Z. Chen, Z. Wu, B. J. Xia, and N. X. Xu, Int. J. Hydrogen Energy, 29, No. 13: 1377 (2004). Crossref
  26. R.-R. Jeng, C.-Y. Chou, S.-L. Lee, Y.-C. Wu, and H.-Y. Bor, J. Chinese Institute of Engineers, 34, No. 5: 601 (2011). Crossref
  27. G. F. Kobzenko and A. A. Shkola, Zavodskaya Laboratoriya, 7: 41 (1990) (in Russian).
  28. O. M. Ivasishin, V. T. Cherepin, V. N. Kolesnik, and M. M. Gumenyuk, Pribory i Tekhnika Eksperimenta, 3: 147 (2010) (in Russian).
  29. Diagrammy Sostoyaniya Dvoynykh Metallicheskikh Sistem: Spravochnik (Ed. N. P. Lyakishev) (Moscow: Mashinostroenie: 2001) (in Russian).
  30. A. V. Manuilov and V. I. Rodionov, Osnovy Khimii (Moscow: Izd-vo Tsentrpoligraf: 2016) (in Russian).
  31. S. V. Mitrokhin, J. Alloys Compd., 404–406: 384 (2005). Crossref
  32. S. N. Klyamkin, A. Yu. Kovriga, and V. N. Verbetsky, Int. J. Hydrogen Energy, 24, Nos. 2–3: 149 (1999). Crossref