Non-Steady-State Growth During Directional Solidification of Various Crystallographic Orientations

O. P. Fedorov$^{1,2}$, V. F. Demchenko$^{3}$, E. L. Zhivolub$^{2}$

$^{1}$Space Research Institute, NAS of Ukraine and State Space Agency of Ukraine, 40, 4/1, Academician Glushkov Ave., UA-03187 Kyiv, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 12.12.2017. Download: PDF

The growth pattern in the thin and bulk samples of various crystallographic orientations is studied using direct observation of solid–liquid interface in transparent substances and microstructure of Al–Si single crystals. The evolution of regular tilted cells and split seaweed structures is observed in thin samples for different growth orientations and growth rates. During direct study in bulk samples, elongated cells appeared only for <110> orientations, whereas, for <100> orientations, only equiaxed cells appeared. This effect is associated with simultaneous development of the regular cell and irregular seaweed structures in single crystals with growth orientation different from <100>. Continuous pattern evolution due to the effect of solute accumulation results in non-steady-state interface propagation and transformation of elongated cells eventually into equiaxed ones.

Key words: solidification microstructures, crystallographic orientation, solid/liquid interface, cell and dendrite, heat and mass transfer.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i05/0661.html

DOI: https://doi.org/10.15407/mfint.40.05.0661

PACS: 61.50.Ks, 61.72.Mm, 64.70.D-, 68.08.De, 68.70.+w, 81.10.Aj, 81.30.Fb

Citation: O. P. Fedorov, V. F. Demchenko, and E. L. Zhivolub, Non-Steady-State Growth During Directional Solidification of Various Crystallographic Orientations, Metallofiz. Noveishie Tekhnol., 40, No. 5: 661—681 (2018)


REFERENCES
  1. W. W. Mullins and R. F. Sekerka, J. Appl. Phys., 35, No. 2: 444 (1964). Crossref
  2. J. T. C. Lee and R. A. Brown, Phys. Rev. B, 47, No. 9: 4937 (1993). Crossref
  3. G. J. Merchant and S. H. Davis, Phys. Rev. Lett., 63, No. 5: 573 (1989). Crossref
  4. S. de Cheveigne and C. Guthmann, J. Phys. I France, 2: 193 (1992).
  5. H. Jamgotchian, R. Trivedi, and B. Billia, Phys. Rev. E, 47: 4313 (1993). Crossref
  6. W. Losert, D. A. Stilman, H. Z. Cummins, P. Kopczyński, W.-J. Rappel, and A. Karma, Phys. Rev. E, 58, No. 6: 7492 (1998). Crossref
  7. M. Glicksman, J. Cryst. Growth, 450: 119 (2016). Crossref
  8. D. E. Ovsienko, A. M. Ovrutskii, and O. P. Fedorov, ZhETF, 73, No. 3: 518 (1991).
  9. A. G. Borisov, O. P. Fedorov, and V. V. Maslov, J. Cryst. Growth, 112, Nos. 2–3: 463 (1991). Crossref
  10. J. Dechamps, M. Georgelin, and A. Pocheau, Europhys. Lett., 76, No. 2: 291 (2006). Crossref
  11. J. Dechamps, M. Georgelin, and A. Pocheau, Phys. Rev. E, 78, No. 1: 011605 (2008). Crossref
  12. A. Pocheau, J. Dechamps, and M. Georgelin, Phys. Rev. E, 81, No. 5: 051608 (2010). Crossref
  13. H. Xing, X. L. Dong, C. L. Chen, J. Y. Wang, L. F. Du, and K. X. Jin, International J. Heat and Mass Transfer, 90: 911 (2015). Crossref
  14. H. Xing, L. Zhang, K. Song, H. Chen, and K. Jin, International J. Heat and Mass Transfer, 104: 607 (2017). Crossref
  15. S. Akamatsu, G. Faivre, and T. Ihle, Phys. Rev. E, 51, No. 5: 4751 (1995). Crossref
  16. E. Brener, H. Müller-Krumbhaar, and D. Temkin, Europhysics Lett., 17, No. 6: 535 (1992). Crossref
  17. E. Brener, H. Müller-Krumbhaar, and D. Temkin, Phys. Rev. E, 54, No. 3: 2714 (1996). Crossref
  18. T. Ihle and H. Müller-Krumbhaar, Phys. Rev. Lett., 70, No. 20: 3083 (1993). Crossref
  19. B. Utter and E. Bodenschatz, Phys. Rev. E, 66, No. 5: 051604 (2002). Crossref
  20. A. Pocheau, J. Deschamps, and M. Georgelin, JOM, 59, No. 7: 71 (2007). Crossref
  21. Y. Chen, B. Billia, D. Zhjng Li, H. Nguen-Thi, N. Min Xiao, and A.-A. Bongo, Acta Mater., 66: 219 (2014). Crossref
  22. M. Anoorezaei, S. Gurevich, and N. Provatas, Acta Mater., 60: 657 (2012). Crossref
  23. M. Flemings, Solidification Processing (New York: McGrow-Hill Book Company: 1974).
  24. L. R. Morris and W. C. Winegard, J. Crystal Growth, 5: 361 (1969). Crossref
  25. B. Kauerauf, G. Zimmermann, L. Murmann, and S. Rex, J. Cryst. Growth, 193: 701 (1998). Crossref
  26. A. A. Chernov, Modern Crystallography III. Crystal Growth (Ed. B. K. Vainshtein) (Berlin: Springer-Verlag: 1984). Crossref
  27. I. A. Warren and J. S. Langer, Phys. Rev. E, 47: 2702 (1993). Crossref
  28. F. L. Mota, N. Bergeon, D. Tourret, A. Karma, R. Trivedi, and B. Billia, Acta Mater., 85: 363 (2015). Crossref
  29. M. E. Glicksman and N. B. Singh, J. Cryst. Growth, 98, No. 3: 277 (1989). Crossref
  30. J. Lipton, M. E. Glicksman, and W. Kurz, Mater. Sci. Eng., 65, No. 1: 57 (1984). Crossref
  31. R. Trivedi and K. Somboonsuk, Acta Met., 33, No. 6: 1061 (1985). Crossref
  32. H. Jamgotchian, N. Bergeon, D. Binelli, P. Voge, and B. Billia, J. Microscopy, 203, Iss. 1: 119 (2001). Crossref
  33. O. P. Fedorov, J. Cryst. Growth, 156: 473 (1995). Crossref
  34. R. J. Schaefer and M. E. Glicksman, Met. Trans., 1: 1973 (1970). Crossref
  35. N. Noel, H. Jamgotchian, and B. Billia, J. Cryst. Growth, 187: 516 (1998). Crossref
  36. E. L. Zhivolub and O. P. Fedorov, Crystallogr. Rep., 43: 139 (1998).
  37. K. A. Jackson, D. R. Uhlmann, and J. D. Hunt, J. Cryst. Growth, 1, No. 1: 1 (1967). Crossref