Peculiarities of Electrical Conductivity of Metal/Carbon Nanotubes Array

M. M. Nishchenko$^{1}$, H. Yu. Mykhailova$^{1}$, G. P. Prikhodko$^{1}$, M. M. Dashevskyi$^{2}$, O. I. Nakonechna$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine

Received: 02.02.2018. Download: PDF

A study of the electrical conductivity of mechanical mixture of both the carbon nanotubes (CNTs) (with work function of $\cong$ 4.7 eV) and the Cu and Al metal microparticles (with lower work functions of 4.2 and 4.0 eV, respectively) under compression is provided. As shown, the electrical conductivity of the Al and Cu powders is essentially increased with addition of the CNTs (up to 30 wt.%). The electrical conductivity dependence on the density of a powder mixture of Al with CNTs is characterized by a deep minimum observed at the concentration of 9.6 wt.% CNTs. This feature is a result of the electrons’ localization in the Al$_2$O$_3$ film formed on a sample surface. A number of factors, in particular, a shift of the Fermi level of the CNTs deep into the valence band, explain the sharp decrease in the electrical conductivity of the Al + CNTs composite, unlike the Cu-based composite.

Key words: carbon nanotube, nanocomposite, electrical conductivity.



PACS: 61.48.De, 62.23.Pq, 72.80.Tm, 72.80.Vp, 73.63.Rt, 81.07.Oj, 81.40.Vw

Citation: M. M. Nishchenko, H. Yu. Mykhailova, G. P. Prikhodko, M. M. Dashevskyi, and O. I. Nakonechna, Peculiarities of Electrical Conductivity of Metal/Carbon Nanotubes Array, Metallofiz. Noveishie Tekhnol., 40, No. 6: 749—758 (2018)

  1. S. Iijima, Nature, 354: 56 (1991). Crossref
  2. E. T. Thostenson, Z. Ren, and T.-W. Chou, Compos. Sci. Technol., 61, Iss. 13: 1899 (2001). Crossref
  3. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, Iss. 5582: 787 (2002). Crossref
  4. A. V. Eletskii, Phys. Uspekhi, 45: 369 (2002). Crossref
  5. Yu. V. Gulyaev, N. I. Sinitsyn, G. V. Torgashov, Sh. T. Mevlyut, A. I. Zhbanov, Yu. F. Zakharchenko, Z. Ya. Kosakovskaya, L. A. Chernozatonskii, O. E. Glukhova, and I. G. Torgashov, J. Vac. Sci. Technol. B, 15: 422 (1997). Crossref
  6. E. A. Tarasov, G. V. Torgashov, Yu. A. Grigoriev, N. I. Sinitsyn, N. P. Aban'shin, and B. I. Gorfinkel, Int. Conf. Actual Problems Electron Devices Eng. (Sept. 19–20, 2012, Saratov, Russia), p. 83. Crossref
  7. N. de Jonge and J.-M. Bonard, Phil. Trans. R. Soc. London A, 362: 2239 (2004). Crossref
  8. Y. Hayamizu, R. C. Davis, T. Yamada, D. N. Futaba, S. Yasuda, M. Yumura, and K. Hata, Phys. Rev. Lett., 102, Iss. 17: 175505 (2009). Crossref
  9. P. V. Kamat, Nano Today, 1, Iss. 4: 20 (2006). Crossref
  10. E. L. Corral, M. L. Shofner, and E. V. Barrera, Carbon Nanotubes: Science and Applications (Ed. M. Meyyappan) (CRC Press: 2004).
  11. M. Lucci, P. Regoliosi, A. Reale, A. Di Carlo, S. Orlanducci, E. Tamburri, M. L. Terranova, P. Lugli, C. Di Natale, A. D'Amico, and R. Paolesse, Sensors and Actuators B: Chemical, 111–112: 181 (2005). Crossref
  12. A. Rochefort, Ph. Avouris, F. Lesage, and D. R. Salahub, Phys. Rev. B, 60: 13824 (1999). Crossref
  13. T. Blythe and D. Bloor, Electrical Properties of Polymers (Cambridge: University Press: 2005).
  14. V. V. Anikeyev, B. V. Kovalchuk, V. M. Lazorenko, G. Yu. Mikhaylova, M. M. Nishchenko, V. N. Pimenov, G. P. Prikhodko, S. I. O. Sadykhov, and V. I. Tovtin, Inorganic Materials: Applied Research, 7, Iss. 2: 204 (2016). Crossref
  15. V. V. Anikeev, B. V. Koval'chuk V. M. Lazorenko, G. Yu. Mikhaylova, M. M. Nishchenko, V. N. Pimenov, I. M. Sidorchenko, Yu. F. Suskaya, and V. I. Tovtin, Inorganic Materials: Applied Research, 5, Iss. 2: 138 (2014). Crossref
  16. O. Boshko, O. Nakonechna, M. Dashevskyi, K. Ivanenko, N. Belyavina, and S. Revo, Advanced Powder Technology, 27, Iss. 4: 1101 (2016). Crossref