Influence of Various Types of Thermal Action on Structure of an Alloy of the Al–Cu–Fe System Containing a Quasi-Crystalline Phase

V. V. Gіrzhon, O. V. Smolyakov, I. V. Gayvoronsky

Zaporizhzhya National University, 66 Zhukovsky Str., 69600 Zaporizhzhya, Ukraine

Received: 15.02.2018. Download: PDF

The structural-phase state of the surface layers of Al$_{63}$Cu$_{25}$Fe$_{11}$ alloy containing icosahedral quasi-crystalline $\psi$-phase after low-temperature thermal cycling, isothermal annealing and pulse-laser treatment in the surface-melting mode is investigated by the XRD and metallographic analyses. As shown, the microhardness of the initial structure significantly increases after thermo-cycling. The maxima of microhardness inside the laser-action zone are associated with decreasing in the cooling rate of the melt in these areas.

Key words: icosahedral quasi-crystalline phase, thermocycling, annealing, pulse-laser treatment, microstructure.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i07/0909.html

DOI: https://doi.org/10.15407/mfint.40.07.0909

PACS: 61.44.Br, 61.72.Ff, 61.80.Ba, 62.20.Qp, 81.16.Mk, 81.30.Bx, 81.40.Wx

Citation: V. V. Gіrzhon, O. V. Smolyakov, and I. V. Gayvoronsky, Influence of Various Types of Thermal Action on Structure of an Alloy of the Al–Cu–Fe System Containing a Quasi-Crystalline Phase, Metallofiz. Noveishie Tekhnol., 40, No. 7: 909—918 (2018) (in Russian)


REFERENCES
  1. A. P. Tsai, A. Inoue, and T. Masumoto, Jpn. J. Appl. Phys., 26, No. 9: L1505 (1987). Crossref
  2. J. Q. Guo and A. P. Tsai, J. Mater. Res., 16, No. 11: 3038 (2001). Crossref
  3. L. P. Feng, T. M. Shao, Y. J. Jin, E. Fleury, D. H. Kim, and D. R. Chen, J. Non-Cryst. Solids, 351: 280 (2005). Crossref
  4. A. I. Ustinov, B. A. Movchan, and S. S. Polischuk, Metallofiz. Noveishie Tekhnol., 24, No. 3: 365 (2002) (in Russian).
  5. K. Biswas, R. Galun, B. L. Mordike, and K. Chattopadhyay, J. Non-Cryst. Solids, 334–335: 517 (2004). Crossref
  6. V. V. Girzhon, A. V. Smolyakov, and I. V. Tantsyura, Fiz. Met. Metalloved., 106, No. 4: 398 (2008) (in Russian).
  7. K. Biswas, R. Galun, B. L. Mordike and K. Chattopadhyay, Metall. Mater. Trans. A, 36, Iss. 7: 1947 (2005). Crossref
  8. V. Raghavan, J. Phase Equilib., 26, No. 1: 59 (2005). Crossref
  9. L. Zhang and R. Lück, J. Alloy Compd., 342: 53 (2002). Crossref
  10. D. Gratias, Y. Calvayrac, J. Devaud-Rzepski, F. Faudot, M. Harmelin, A. Quivy, and P. A. Bancel, J. Non-Cryst. Solids, 153–154: 482 (1993). Crossref
  11. B. Grushko, R. Wittenberg, and D. Holland-Moritz, J. Mater. Res., 11, No. 9: 2177 (1996). Crossref
  12. I. V. Gayvoronskyy, V. V. Girzhon, and O. V. Smolyakov, Metallofiz. Noveishie Tekhnol., 34, No. 5: 697 (2012) (in Russian).
  13. C. X. Zhao, C. Kwakernaak, Y. Pan, I. M. Richardson, Z. Saldi, S. Kenjeres, and C. R. Kleijn, Acta Mater., 58: 6345 (2010). Crossref