Influence of Lubricoolants with Active Chemical Elements on Increase of Durability of Steel Parts After Frictional Hardening Working Surfaces

V. V. Tykhonovych

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 06.03.2018. Download: PDF

As determined, an increase in the fatigue crack resistance of machine parts at frictional hardening of their working surfaces essentially depends on the choice of the technological environment. A complex local study of the influence of different working media on the phase and chemical compositions, microstructure, and stress state of friction-hardened steel 45 is carried out. As shown, a saturation of friction-hardened metal with active chemical elements from lubricoolants influences on the fatigue crack resistance of articles. These chemical elements are predominantly located in the near-boundary regions of grains. They do not form any chemical compounds with the atoms of the parent metal and significantly change both the electronic structure and the nature of chemical bonds between the atoms. Saturation of friction-hardened metal with carbon atoms reduces the fatigue crack resistance of the material because of low atoms’ mobility in the near-boundary regions of the grains because of formation of strong covalent bonds between the carbon atoms and the surrounding metal atoms.

Key words: friction, lubricoolants, fatigue crack resistance, plastic deformation, impurity atoms, electronic structure, interatomic bonds.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i08/1005.html

DOI: https://doi.org/10.15407/mfint.40.08.1005

PACS: 06.60.Vz, 62.20.Qp, 71.20.Be, 81.40.Np, 81.40.Pq, 81.65.-b, 82.80.Pv

Citation: V. V. Tykhonovych, Influence of Lubricoolants with Active Chemical Elements on Increase of Durability of Steel Parts After Frictional Hardening Working Surfaces, Metallofiz. Noveishie Tekhnol., 40, No. 8: 1005—1027 (2018) (in Russian)


REFERENCES
  1. V. M. Smelyanskiy, Mekhanika Uprochneniya Detaley Poverkhnostnym Plasticheskim Deformirovaniem (Moscow: Mashinostroenie: 2002) (in Russian).
  2. I. V. Gurey, Visnyk Ternopil's'kogo Derzhavnogo Tekhnichnogo Universytetu, 4, No. 4: 11 (1999) (in Ukrainian).
  3. I. V. Gurey, Visnyk Ternopil's'kogo Derzhavnogo Tekhnichnogo Universytetu, 3, No. 4: 124 (1998) (in Ukrainian).
  4. I. V. Gurey, Visnyk Ternopil's'kogo Derzhavnogo Tekhnichnogo Universytetu, 4, No. 3: 91 (1999) (in Ukrainian).
  5. I. V. Gurey, T. A. Gurey, and V. V. Tykhonovych, Fiziko-Khimicheskaya Mekhanika Materialov, 35, No. 1: 122 (1999) (in Russian).
  6. I. V. Gurey, and M. I. Pashenko, Trenie i Iznos, 21, No. 2: 192 (2000) (in Russian).
  7. M. I. Pashenko and I. V. Gurey, Metaloznavstvo ta Obrobka Metaliv, No. 4: 19 (1999) (in Ukrainian).
  8. I. V. Gurey, Mashynoznavstvo, Nos. 11/12: 30 (1998) (in Ukrainian).
  9. Yu. I. Babey, Fizicheskie Osnovy Impul'snogo Uprochneniya Stali i Chuguna (Kiev: Naukova Dumka: 1988) (in Russian).
  10. S. Ya. Yarema, Fiziko-Khimicheskaya Mekhanika Materialov, 17, No. 4: 100 (1981) (in Russian).
  11. S. Ya. Yarema, Rost Ustalostnykh Treshchin: Metodicheskie Aspekty Issledovaniy. Metody i Sredstva Otsenki Treshchinostoykosti Konstruktsionnykh Materialov (Kiev: Naukova Dumka: 1980), p. 177 (in Russian).
  12. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, Rentgenograficheskiy i Elektronno-Opticheskiy Analiz (Moscow: Metalurgiya: 1970) (in Russian).
  13. N. I. Komyak and Yu. G. Myasnikov, Rentgenovskie Metody i Apparatura dlya Opredeleniya Napryazheniy (Leningrad: Nauka: 1972) (in Russian).
  14. V. V. Nemoshkalenko, V. V. Gorskiy, V. V. Tikhonovich et al., Metallofizika, 6, No. 6: 93 (1984) (in Russian).
  15. A. I. Kovalyov and G. V. Shcherbedinskiy, Sovremennye Metody Issledovaniya Poverkhnosti Metallov i Splavov (Moscow: Metalurgiya: 1989) (in Russian).
  16. A. I. Kovalyov, V. P. Mishina, and G. V. Shcherbedinskiy, Metallofizika, 9, No. 3: 112 (1987) (in Russian).
  17. D. Singh, Plane Waves, Psevdopotentials and LAPW Method (Dordrecht: Kluwer Academic: 1994). Crossref
  18. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Let., 77: 3865 (1996). Crossref
  19. P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, and J. Luits, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculation Crystal Properties (Wien: Techn. Universität Wien: ISBN 3-9501031-1-2: 2001).
  20. L. R. Botvina, Kinetika Razrusheniya Konstruktsionnykh Materialov (Moscow: Mashinostroenie: 1989) (in Russian).
  21. V. V. Tykhonovych, Metallofiz. Noveishie Tekhnol., 37, No. 6: 817 (2015) (in Russian). Crossref
  22. V. V. Tykhonovych and V. M. Uvarov, Uspehi Fiziki Metallov, 12, No.2: 209 (2011) (in Russian). Crossref
  23. V. V. Tykhonovych, Metallofiz. Noveishie Tekhnol., 33, No. 12: 1671 (2011) (in Russian).
  24. V. V. Gors'kiy, O. M. Grypachevs'ky, V. V. Tykhonovych, and V. M. Uvarov, Uspehi Fiziki Metallov, 4, No. 4: 271 (2003) (in Russian). Crossref
  25. V. V. Tykhonovych, Metallofiz. Noveishie Tekhnol., 38, No. 6: 763 (2016) (in Russian). Crossref
  26. D. Briggs and M. P. Sikh, Analiz Poverkhnosti Metodami Auger- i Rentgenovskoy Fotoelektronnoy Spektroskopii (Moscow: Mir: 1987) (Russian translation).
  27. V. I. Arkharov, Okislenie Zheleza (Moscow: Metallurgizdat: 1945) (in Russian).
  28. R. L. Blake, R. E. Nessevick, T. Zoltai, and L. W. Finger, American Mineralogist, 51: 123 (1966).