Study of Process of Formation of Solid Solutions and Intermetallic Compounds at Mechanical Activation and Annealing of Coarse-Grained Powder Blends of Copper with Aluminum and Manganese

V. M. Nadutov, A. O. Perekos, B. M. Mordyuk, V. Z. Voinash, T. V. Efimova, V. P. Zalutskiy, T. G. Kabantsev, N. O. Piskun

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 18.01.2018. Download: PDF

Influence of ultrasonic treatment (UST) in ball mill on structure–phase characteristics and magnetic properties of coarse-grained powder mixtures (CGPM) of copper with aluminium and manganese is studied by X-ray analysis and magnetic methods. As shown, UST of the (Cu + Mn, Al) CGPM results in mutual dissolution of metals, change of phase state and dispersity. Dissolution of metals depends on width of mutual solubility region on equilibrium state diagrams. Mechanical activation treatment in ball mill results in considerable grinding of structure and in dislocation density increasing. After annealing of CGPM fabricated by UST, additional lines of poor metals appear in X-ray diffractogram that points to beginning of powder-systems’ transition into equilibrium state. Concentrations of aluminium, copper and manganese in CGPM as well as the sizes of coherent scattering regions do not practically change that indicates a high thermal stability of CGPM fabricated in ultrasonic mill. As supposed, these peculiarities may by conditioned by presence of oxide coatings, which inhibit diffusion processes. Equilibrium ferromagnetic phases of Cu$_2$MnAl and MnAl are absent in the Cu + Mn + Al and Mn + Al CGPM that may by connected with the presence of metal oxides in powder mixtures and with influence of size factor.

Key words: coarse-grained powders, ultrasonic milling, magnetic properties, X-ray structural analysis, magnetometry.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i08/1093.html

DOI: https://doi.org/10.15407/mfint.40.08.1093

PACS: 61.05.cf, 61.05.cp, 64.75.Nx, 75.60.Ej, 75.75.Cd, 81.07.Wx, 81.20.Ev, 81.70.Jb

Citation: V. M. Nadutov, A. O. Perekos, B. M. Mordyuk, V. Z. Voinash, T. V. Efimova, V. P. Zalutskiy, T. G. Kabantsev, and N. O. Piskun, Study of Process of Formation of Solid Solutions and Intermetallic Compounds at Mechanical Activation and Annealing of Coarse-Grained Powder Blends of Copper with Aluminum and Manganese, Metallofiz. Noveishie Tekhnol., 40, No. 8: 1093—1111 (2018) (in Ukrainian)


REFERENCES
  1. A. P. Gulyayev, Metallovedenie [Metal Science] (Moscow: Metallurgiya: 1986) (in Russian).
  2. Dvoinyye i Mnogokomponentnye Sistemy na Osnove Medi [Binary and Multicomponent Systems Based on Copper] (Ed. S. V. Shukharin) (Moscow: Nauka: 1979) (in Russian).
  3. V. V. Kokorin, Martensitnye Prevrashcheniya v Neodnorodnykh Tverdykh Rastvorakh [Martensitic Transformations in Heterogeneous Solid Solutions] (Kiev: Naukova Dumka: 1987) (in Russian).
  4. N. I. Vlasova, G. S. Kandaurova, Ya. S. Shur, and N. N. Bykhanova, Fizika Metallov i Metallovedenie, 51, No. 6: 1127 (1981) (in Russian).
  5. K. H. Fisher, phys. status solidi (b), 116, Iss. 2: 357 (1983). Crossref
  6. A. V. Kozlov, B. N. Mordyuk, and G. I. Prokopenko, Prystriy dlya Otrymannya Poroshkovykh Materialiv [The Device for Obtaining Powder Materials] (Patent Ukraine No. 59770A, Sept.15, 2003) (Bull. No. 9, 2003) (in Ukrainian).
  7. B. N. Mordyuk and G. I. Prokopenko, Ultrasonics, 42, Nos. 1-9: 43 (2004). Crossref
  8. A. Calka and D. Wexler, Nature, 419: 147 (2002). Crossref
  9. M. Zhu, L. Y. Dai, N. S. Gu, B. Cao, and L. Z. Ouyang, J. Alloys Compd., 478, Iss. 1-2: 624 (2009). Crossref
  10. G. I. Prokopenko, K. V. Chuistov, O. V. Kozlov, A. Ye. Perekos, B. M. Mordyuk, T. V. Efimova et al., Metallofiz. Noveishie Tekhnol., 25, No. 2: 171 (2003) (in Russian).
  11. A. E. Perekos, B. N. Mordyuk, G. I. Prokopenko, T. V. Ruzhitska, T. V. Efimova, V. P. Zalutskyi, and N. D. Rud, Metallofiz. Noveishie Tekhnol., 30, No. 12: 1619 (2008) (in Russian).
  12. V. I. Iveronova and G. P. Revkevich, Teoriya Rasseyaniya Rentgenovskikh Luchey [Theory of X-Rays Scattering] (Moscow: MGU Publishing: 1972) (in Russian).
  13. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, Rentgenograficheskiy i Ehlectronnoopticheskiy Analiz [X-Ray and Electron-Optic Analysis] (Moscow: MISiS: 1994) (in Russian).
  14. Ya. S. Umansky and Yu.A. Skakov, Fizika Metallov [Physics of Metals] (Moscow: Atomizdat: 1978) (in Russian).
  15. O. M. Barabash and Yu. N. Koval, Kristallicheskaya Struktura Metallov i Splavov [Crystalline Structure of Metals and Alloys] (Kiev: Naukova Dumka: 1986) (in Russian).
  16. V. M. Nadutov, A. E. Perekos, B. N. Mordyuk, V. Z. Voinash, T. V. Efimova, V. P. Zalutskyi, and T. G. Kabantsev, Metallofiz. Noveishie Tekhnol., 40, No. 4: 501 (2018) (in Ukrainian). Crossref
  17. G. V. Lutsenko, A. E. Perekos, and A. M. Gusak, Metallofiz. Noveishie Tekhnol., 22, No. 6: 73 (2000) (in Russian).
  18. I. D. Morokhov, L. I. Trusov, and S. P. Chizhik, Ultradispersnye Metallicheskie Sredy [Ultrafine Metallic Media] (Moscow: Atomizdat: 1967) (in Russian).
  19. A. I. Gusev and A. A. Rempel, Nanokristallicheskie Materialy [Nanocrystalline Materials] (Moscow: Fizmatgiz: 2001) (in Russian).
  20. R. A. Andrievskiy and A. V. Ragulya, Nanostrukturnye Materialy [Nanostructured Materials] (Moscow: Akademiya: 2005) (in Russian).