Ab initio Modelling of Electronic Structure and Mechanical Properties of Substoichiometric TiC$_x$

I. V. Plyushchay$^{1}$, T. L. Tsaregradska$^{1}$, O. I. Plyushchay$^{2}$

$^{1}$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 14.02.2018. Download: PDF

The results of ab initio modelling of electronic structure and mechanical properties of substoichiometric TiC$_x$ are presented. The numerical calculation by means of the density functional theory within the generalized gradient approximation is carried out, using the software package ABINIT. The peculiarities of titanium carbide electronic spectra are discussed. The 24 atoms’ supercell is constructed to analyse the substoichiometric TiC$_x$ electronic spectra. The calculations of pressure for the determination of mechanical moduli are carried out on the Ti$_12$C$_12$, Ti$_12$C$_11$ and Ti$_12$C$_10$ supercells under their isotropic compression and stretching. As shown, an increase in the carbon vacancies’ concentration leads to a decrease in both the specific volume and the bulk modulus that is in a good agreement with previous results.

Key words: titanium carbide, electronic structure, ab initio simulation, mechanical modules.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i08/1113.html

DOI: https://doi.org/10.15407/mfint.40.08.1113

PACS: 31.15.es, 62.20.de, 71.15.Mb, 71.20.Ps, 81.05.Je, 81.05.Zx

Citation: I. V. Plyushchay, T. L. Tsaregradska, and O. I. Plyushchay, Ab initio Modelling of Electronic Structure and Mechanical Properties of Substoichiometric TiC$_x$, Metallofiz. Noveishie Tekhnol., 40, No. 8: 1113—1121 (2018) (in Ukrainian)


REFERENCES
  1. The Physics and Chemistry of Carbides, Nitrides and Borides (Ed. R. Freer) (Manchester, England: 1989). Crossref
  2. C. Cui, B. Hu, L. Zhao, and S. Liu, Mater. Des., 32: 1684 (2011). Crossref
  3. D. Vallauri, I. C.Adrian, and A. Chrysanthou, J. European Ceramic Society, 28: 1697 (2008). Crossref
  4. Phase Diagrams for Binary Alloys. 2nd Ed. (Ed. H. Okamoto) (Materials Park, OH: ASM International: 2010), p. 176, ISBN: 978-0-87170-403-0.
  5. H. W. Hugosson, P. Korzhavyi, U. Jansson, B. Johansson, and O. Eriksson, Phys. Rev. B, 63: 165116 (2001). Crossref
  6. Y. F.Yang, H. Y.Wang, J. Zhang, R. Y. Zhao, Y. H. Liang, and Q. C. Jiang, J. Am. Ceram. Soc., 91: 2736 (2008). Crossref
  7. R. Chang and L. J. Graham, J. Appl. Phys., 37: 3778 (1966). Crossref
  8. Y. Li, W. Wang, B. Zhu, M. Xu, J. Zhu, Y. J. Hao, W. H. Li, and X. J. Long, Sci. China Phys. Mech. Astron., 54: 2196 (2011). Crossref
  9. Y. M. Kim and B. J. Lee, Acta Mater., 56: 3481 (2008). Crossref
  10. M. Guemmaz, G. Moraitis, A. Mosser, M. A. Khan, and J. C. Parlebas, J. Alloys Compd., 262–263: 397 (1997). Crossref
  11. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  12. X. Gonzea, B. Amadond, P. M. Angladee, J. M. Beukena, F. Bottind, P. Boulangera, F. Brunevalq, D. Calistej, R. Caracasl, M. Côtéo, T. Deutschj, L. Genovesei, Ph. Ghosezk, M. Giantomassia, S. Goedeckerc, D. R. Hamannm, P. Hermetp, F. Jolletd, G. Jomardd, S. Lerouxd, M. Mancinid, S. Mazevetd, M. J. T. Oliveiraa, G. Onidab, Y. Pouillona, T. Rangela, G. M. Rignanesea, D. Sangallib, R. Shaltafa, M. Torrentd, M. J. Verstraetea, G. Zerahd, and J. W. Zwanzigerf, Comp. Phys. Comm., 180: 2582 (2009). Crossref
  13. H. B. Schlegel, J. Comput. Chem., 3: 214 (1982). Crossref
  14. I.  V. Plyushchay, T.  L. Tsaregrads'ka, O.  O. Kalenyk, and O.  I. Plyushchay, Metallofiz. Noveishie Tekhnol., 38, No. 9: 1233 (2016) (in Ukrainian). Crossref
  15. http://www.matweb.com/index.aspx
  16. E. N. Korosteleva, V. V. Korzhova, and M. G. Krinitcyn, Metals, 7: 290 (2017). Crossref