On the Advanced Mechanical Properties of Fe–Cu and Y–Cu Nanocomposites Obtained by Mechanical Alloying

M. Dashevskyi, N. Belyavina, O. Nakonechna, M. Melnichenko, S. Revo

Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine

Received: 23.03.2018. Download: PDF

In this study, the Fe–Cu and Y–Cu nanocomposites are synthesized by mechanical alloying of the elemental powder mixture of the iron, copper and crushed yttrium particles in a high-energy planetary ball mill inside the argon atmosphere. Phase transformations in obtained composite materials are studied by X-ray powder-diffraction methods. The metastable supersaturated $\alpha$-(Fe, Cu) solid solution is formed in the Fe–Cu nanocomposites during milling process, while the phase transformation during milling of the equiatomic Y–Cu mixture follows the reaction: Y + Cu → YCu + YCu$_{2}$. All obtained materials demonstrate improved mechanical properties. A set of measurements of the mechanical characteristics is carried out. The hardness measured for both FeCu and YCu nanocomposites is higher than that for conventional bulk alloys due to the grains’ refinement during milling process. Besides, the synthesized nanocomposites are characterized by relatively low values of the Young’s modulus.

Key words: composite material, powder metallurgy, crystal structure, hardness, X-ray diffraction.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i10/1375.html

DOI: https://doi.org/10.15407/mfint.40.10.1375

PACS: 61.05.cp, 61.43.Gt, 62.20.de, 62.20.Qp, 62.23.Pq, 81.20.Ev, 81.20.Wk

Citation: M. Dashevskyi, N. Belyavina, O. Nakonechna, M. Melnichenko, and S. Revo, On the Advanced Mechanical Properties of Fe–Cu and Y–Cu Nanocomposites Obtained by Mechanical Alloying, Metallofiz. Noveishie Tekhnol., 40, No. 10: 1375—1385 (2018)

  1. C. Suryanarayana and N. Al-Aqeeli, Progr. Mater. Sci., 58, Iss. 4: 383 (2013). Crossref
  2. C. Suryanarayana, Progr. Mater. Sci., 46, Iss. 1–2: 1 (2001). Crossref
  3. E. Ma, Prog. Mater. Sci., 50, Iss. 4: 413 (2005). Crossref
  4. P. H. Shingu and K. N. Ishihara, Mater. Trans., 36, Iss. 2: 96 (1995). Crossref
  5. R. B. Schwarz and C. C. Koch, Appl. Phys. Lett., 49, Iss. 3: 146 (1986). Crossref
  6. J. Eckert, L. Schultz, and K. Urban, Appl. Phys. Lett., 55, Iss. 2: 117 (1989). Crossref
  7. E. Hellstern, H. I. Fecht, Y. Fu, and W. L. Johnson, J. Appl. Physics, 65: 305 (1989). Crossref
  8. V. L. Tagarielli, N. A. Fleck, A. Colella, and P. Matteazzi, J. Mater. Sci., 46, Iss. 2: 385 (2011). Crossref
  9. O. Boshko, O. Nakonechna, M. Dashevskyi, K. Ivanenko, N. Belyavina, and S. Revo, Adv. Powder Technology, 27, Iss. 4: 1101 (2016). Crossref
  10. K. Gschneidner Jr., A. Russell, A. Pecharsky, J. Morris, Z. Zhang, T. Lograsso, D. Hsu, C. H. C. Lo, Y. Ye, A. Slager, and D. Kesse, Nature Materials, 2, No. 9: 587 (2003). Crossref
  11. A. M. Russell, Z. Zhang, K. A. Gschneidner Jr., T. A. Lograsso, A. O. Pecharsky, A. J. Slager, and D. C. Kesse, Intermetallics, 13, Iss. 6: 565 (2005). Crossref
  12. M. Dashevskyi, O. Boshko, O. Nakonechna, and N. Belyavina, Metallofiz. Noveishie Tekhnol., 39, No. 4: 541 (2017). Crossref
  13. H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (New York: Wiley: 1974).
  14. W. C. Oliver and G. M. Pharr, J. Mater. Res., 7, Iss. 6: 1564 (1992). Crossref
  15. I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Elastic Moduli of Metals and Nonmetals: A Handbook (Kiev: Naukova Dumka: 1982) (in Russian).
  16. Yu. Milman, S. Dub, and A. Golubenko, Symposium AA—Fundamentals of Nanoindentation and Nanotribology IV, 1049: 1049-AA05-06 (2007). Crossref
  17. D. Tabor, The Hardness of Metals (Oxford: Clarendon Press: 2000).
  18. V. A. Pozdnyakov and A. M. Glezer, Phys. Solid State, 44, Iss. 4: 732 (2002). Crossref
  19. T. Ungar, H. Mughrabi, D. Rönnpagel, and M. Wilkens, Acta Metall., 32, Iss. 3: 333 (1984). Crossref
  20. H. Mughrabi, Acta Metall., 31, Iss. 9: 1367 (1983). Crossref
  21. A. Sekkal, A. Benzair, H. Aourag, H.I. Faraoun, and G. Merad, Physica B, 405, Iss. 13: 2831 (2010). Crossref
  22. J. R. Morris, Y. Ye, Y. B. Lee, B. N. Harmon, K. A. Gschneidner Jr., and A. M. Russell, Acta Mater., 52, Iss. 16: 4849 (2004). Crossref
  23. S. S. Chouhan, P. Soni, G. Pagare, S. P. Sanyal, and M. Rajagopalan, Physica B, 406, Iss. 3: 339 (2011). Crossref