Miniature Meander- and Fractal-Shaped Microstrip Resonators

A. A. Kalenyuk, S. I. Futimsky

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 27.06.2018. Download: PDF

Numerical calculations of the characteristics of the meander- and fractal-shape (Hilbert curve) topologies of close-packed microstrip resonators are performed. The amplitude–frequency characteristics, resonance frequencies, quality factors, and geometric factors are calculated. The mechanisms of neighbouring resonator segments’ interaction are found. The latter strongly affects both the resonance frequency and the quality factor. Two high-temperature superconducting fractal-shaped microstrip resonators are fabricated using thin films of YBa$_2$Cu$_3$O$_{7-\delta}$ (YBCO); the amplitude–frequency characteristics, the resonance frequencies, and the quality factor–frequency dependences are measured. Frequency dependence of a surface resistance of the YBCO film is found. The quality factors of the superconducting and copper resonators are compared, and the reasonability of the YBCO films’ usage as a material for thin-film resonators’ manufacturing is assessed.

Key words: microwave, high-temperature superconductivity, microstrip resonator, fractal, quality factor, surface resistance.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i12/1573.html

DOI: https://doi.org/10.15407/mfint.40.12.1573

PACS: 02.70.Dh, 74.25.nn, 74.72.-h, 74.78.-w, 84.32.-y, 84.40.-x, 85.25.-j

Citation: A. A. Kalenyuk and S. I. Futimsky, Miniature Meander- and Fractal-Shaped Microstrip Resonators, Metallofiz. Noveishie Tekhnol., 40, No. 12: 1573—1587 (2018)


REFERENCES
  1. J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications (New York, USA: John Wiley & Sons, Inc.: 2001). Crossref
  2. D. M. Pozar, Microwave Engineering (Castleton, NY, USA: JohnWiley & Sons, Inc.: 2012).
  3. D. G. Swanson, J. Wolfgang, and J. R. Hoefer, Microwave Circuit Modeling Using Electromagnetic Field Simulation (Boston, USA: Artech House, Inc.: 2003).
  4. E. G. Cristal and S. Frenkel, IEEE Trans. Microwave Theory Tech., 20, No. 11: 719 (1972). Crossref
  5. G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (New York, USA: McGraw-Hill, Inc.: 1964), p. 1096.
  6. A. A. Kalenyuk, Low Temp. Phys., 35, No. 2: 105 (2009). Crossref
  7. H.-X. Xu, G.-M. Wang, C.-X. Zhang, and J.-G. Liang, Int. J. RF Microwave Comput.-Aided Eng., 21, No. 4: 399 (2011). Crossref
  8. M. J. Lancaster, Passive Microwave Device Applications of High-Temperature Superconductors (New York, USA: Cambridge University Press: 1997). Crossref
  9. I. B. Vendik, Supercond. Sci. Technol., 13, No. 7: 974 (2000). Crossref
  10. A. A. Kalenyuk, A. L. Kasatkin, and V. M. Pan, Proc. of Symp. 'The 6th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves–MSMW'07' (June 25–30, 2007) (Kharkiv: 2007), vol. 1, p. 413.
  11. A. A. Kalenyuk, A. I. Rebikov, A. L. Kasatkin, and V. M. Pan, Proc. of Symp. '2010 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves–MSMW'2010' (June 21–26, 2010) (Kharkiv: 2010), p. 1.
  12. N. T. Cherpak, A. A. Lavrinovich, A. A. Kalenyuk, V. M. Pan, A. I. Gubin, V. Khramota, A. A. Kurakin, and S. A. Vitusevich, Telecommun. Radio Eng., 69, No. 15: 1357 (2010). Crossref
  13. V. L. Svetchnikov, V. S. Flis, A. A. Kalenyuk, A. L. Kasatkin, A. I. Rebikov, V. O. Moskaliuk, C. G. Tretiatchenko, and V. M. Pan, J. Phys.: Conf. Ser., 234, No. 1: 012041 (2010). Crossref
  14. V. M. Pan, A. A. Kalenyuk, A. L. Kasatkin, O. M. Ivanyuta, and G. A. Melkov, J. Supercond. Novel Magn., 20, No. 1: 59 (2007). Crossref
  15. A. Porch, D. W. Huish, A. V. Velichko, M. J. Lancaster, J. S. Abell, A. Perry, and D. P. Almond, IEEE Trans. on Appl. Supercond., 15, No. 2: 3706 (2005). Crossref
  16. V. F. Tarasov, I. V. Korotash, V. M. Pan, M. A. Skoryk, M. Lorenz, S. I. Futimsky, and A. A. Filimonov, Metallofiz. Noveishie Tekhnol., 24, No. 3: 313 (2002).
  17. V. M. Pan, D. A. Luzhbin, A. A. Kalenyuk, A. L. Kasatkin, and V. A. Komashko, J. Low Temp. Phys., 31, No. 3: 254 (2005). Crossref