Structure Formation of as Cast Biocompatible Alloys of the Ti–Nb–Si System

О. М. Shevchenko, L. D. Kulak, M. M. Kuzmenkо, S. O. Firstov

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 25.10.2018. Download: PDF

The investigation of as cast alloys of the Ti–Nb–Si system with niobium content 18% wt. and silicon content from 0.6 to 1.2% wt. is carried out. The influence of alloying elements at the structure and hardness is studied. As shown, in the alloys of these compositions, during crystallization, there is no eutectic decomposition with the release of primary silicides, while cooling processes the quenching and secondary silicide (Ti, Nb)$_3$Si separation undergo. The influence of niobium shows up in the enhancement of the release of silicides. As determined, the maximum level of mechanical properties in the alloys of Ti–18Nb–$x$Si system can be obtained at 1% wt. Si content by solid solution strengthening and dispersion hardening.

Key words: Ti–Nb–Si alloys, structure, decomposition, strengthening, silicides.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i03/0363.html

DOI: https://doi.org/10.15407/mfint.41.03.0363

PACS: 64.75.Nx, 81.30.Kf, 81.30.Mh, 81.40.Cd, 81.40.Ef, 87.85.jj

Citation: О. М. Shevchenko, L. D. Kulak, M. M. Kuzmenkо, and S. O. Firstov, Structure Formation of as Cast Biocompatible Alloys of the Ti–Nb–Si System, Metallofiz. Noveishie Tekhnol., 41, No. 3: 363—374 (2019) (in Ukrainian)


REFERENCES
  1. R. L. Saha, T. K. Nandy, and R. D. Mistra, J. Mater. Sci., 26: 2637 (1991). Crossref
  2. K. Anselme, B. Noël, and P. Hardouin, J. Mater. Sci.: Mater. Med., 10, No. 12: 815 (1999). Crossref
  3. S. O. Firstov, Nove Pokolinnya Materialiv na Bazi Tytanu. Mekhanika Ruynuvannya Materialiv i Mitsnist' Konstruktsiy [A New Generation of Materials on the Titanium Base. Fracture Mechanics of Materials and Strength of Constructions] (Ed. V. V. Panasiuk) (Lviv: FMI NAS of Ukraine: 2004) (in Ukrainian).
  4. S. A. Firstov, S. V. Tkachenko, and N. N. Kuz'menko, Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1: 14 (2009) (in Russian).
  5. M. M. Kuz'menko, Materials Science, 44, No. 1: 49 (2008). Crossref
  6. M. M. Kuz'menko, Sovremennye Problemy Fizicheskogo Materialovedeniya, 16: 118 (2007) (in Ukrainian).
  7. Han-Sol Kim, Won-Yong Kim, and Sung-Hwan Lim, Scripta Materialia, 54, No. 5: 887 (2006). Crossref
  8. O. M. Shevchenko, L. D. Kulak, O. V. Datskevich, N. N. Kuzmenko, G. E. Khomenko, and S. O. Firstov, Dopov. Nac. Akad. Nauk Ukr., No. 2: 63 (2016) (in Ukrainian). Crossref
  9. O. M. Shevchenko, L. D. Kulak, M. M. Kuzmenko, A. V. Kotko, and S. O. Firstov, Metallofiz. Noveishie Tekhnol., 39, No. 6: 823 (2017) (in Ukrainian). Crossref
  10. B. P. Bewlay and M. R. Jackson, J. Phase Equilib., 18, No. 3: 264 (1997). Crossref
  11. B. P. Bewlay, M. R. Jackson, and R. R. Bishop, J. Phase Equilib., 19, No. 6: 577 (1998). Crossref
  12. J.-C. Zhao, M. R. Jackson, and L. A. Peluso, Mater. Sci. Eng. A, 372, Nos. 1-2: 21 (2004). Crossref
  13. Titanovye Splavy. Metallografiya Titanovykh Splavov [Titanium Alloys. Metallography of Titanium Alloys] (Ed. N. F. Anoshkin) (Moscow: Metallurgiya: 1980) (in Russian).
  14. G. I. Nosova, Fazovye Prevrashcheniya v Splavakh Titana [Phase Transformations in Titanium Alloys] (Moscow: Metallurgiya: 1968) (in Russian).
  15. H. S. Kim, S. H. Lim, I. D. Yeo, and W. Y. Kim, Mater. Sci. Eng. A, 449-451: 322 (2007). Crossref
  16. W. Y. Kim, Mater. Sci. Forum, 546-549, No. 4: 2151 (2007). Crossref