The Temperature Change Effect at the Start and at the End of Irradiation in a Research Reactor on the Neutron Embrittlement of $\alpha$-Iron

О. R. Gokhman, М. S. Kondria, О. Kh. Таdеush

South Ukrainian National Pedagogical University Named after K. D. Ushynsky, 26 Staroportofrankivs’ka Str., 65020 Odesa, Ukraine

Received: 29.01.2019; final version - 18.04.2019. Download: PDF

The method of cluster dynamics (CD) is used to simulate the effect of the change in temperature of reactor pressure vessel on the time evolution of point defect clusters and the induced neutron embrittlement of $\alpha$-iron in a research nuclear reactor BR-2 (Mol, Belgium). For the two temperature regimes, the irradiation times, which provides the qualitatively change of the mean size and number density of self-interstitial atom clusters (SIAC) and vacancy clusters (VC), are found. Temperature is chosen of 573 K during all irradiation time at the first regime. Temperature is grown from the room one (288 K) to the value of 573 K during the start of nuclear reactor operation mode with time length about 381 hours; thereafter it does not change during next $\cong$ 14 days; then, at the second regime, the temperature decrease to the value of about 373 K. The neutron irradiation conditions are considered as the same for both temperature regimes, i.e. the neutron flux is of 1.39$\cdot10^{-7}$ dpa/s (E > 1 MeV) during 15 days. Master equation of CD is written as the system of stiff ordinary differential equations. The special numerical algorithm are applied in order avoid the problem of unstable solution. For this aim, the integration of master equation is carried out by the corresponding Code Linear Solver of Ordinary Differential Equations (LSODE) created in Livermore Lab (USA) in 1984. The transmission electron microscopy (TEM) and positron annihilation spectroscopy (PAS) experimental data are used for the calibration of CD model. The values of irradiation doses, which provide transition from the nucleation stage to the growth stage, are found for SIAC and VC on the assumption of both the constant temperature and the real change of the reactor pressure vessel temperature in the nuclear reactor BR-2. Based on the values of mean size and number density of SIAC and VC, the irradiation induced increasing of yield stress is estimated for both considered temperature regimes.

Key words: cluster dynamics, change of temperature, neutron embrittlement, $\alpha$-iron.



PACS: 07.05.Tp, 61.72.Cc, 61.72.Ji, 61.80.Az, 61.80.Hg, 61.82.Bg

Citation: О. R. Gokhman, М. S. Kondria, and О. Kh. Таdеush, The Temperature Change Effect at the Start and at the End of Irradiation in a Research Reactor on the Neutron Embrittlement of $\alpha$-Iron, Metallofiz. Noveishie Tekhnol., 41, No. 6: 717—732 (2019) (in Ukrainian)

  1. A. Ulbricht, E. Altstadt, F. Bergner, H. Viehrig, and U. Keyderling, J. Nucl. Mater., 416: 111 (2011). Crossref
  2. H. Viehrig, E. Altstadt, and M. Houska, IAEA Technical Meeting on 'Degradation of Primary System Components of Water Cooled Nuclear Power Plants: Current Issues and Future Challenges' (November 5-8, 2013, Vienna).
  3. G. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Springer: 2007). Crossref
  4. C. Heintze, F. Bergner, S. Akhmadaliev, and E. Altstadt, J. Nucl. Mater., 472: 196 (2016). Crossref
  5. A. Gritsenko, V. Demekhin, V. Ilkovich, V. Bukanov, and E. Vasilieva, Yaderna ta Radiatsiyna Bezpeka, 50: 29 (2011) (in Russian).
  6. V. Ilkovich, V. Demekhin, and V. Bukanov, XIX Shchorichna Naukova Konferentsiya Instytutu Yadernykh Doslidzhen N.A.S. of Ukraine (24-27 January 2012, Kyiv) (Kyiv: Istitut Yadernykh Doslidzhen, N.A.S. of Ukraine: 2012), c. 87 (in Ukrainian).
  7. G. Odette, T. Yamamoto, and D. Klingensmith, Philos. Mag., 85: 779 (2005). Crossref
  8. S. Shu, N. Almirall, P. Wells, T. Yamamoto, G. Odette, and D. Morgan, Acta Mater., 157: 72 (2018). Crossref
  9. E. Meslin, M. Lambrecht, M. Hernandez-Mayoral, and F. Bergner, J. Nucl. Mater., 406: 73 (2010). Crossref
  10. C. Becquart, A. Souidi, C. Domain, M. Hou, L. Malerba, and R. Stoller, J. Nucl. Mater., 351: 196 (2006). Crossref
  11. N. Castin, M. Pascuet, and L. Malerba, J. Nucl. Mater., 429: 315 (2012). Crossref
  12. E. Meslin, A. Barbu, L. Boulanger, B. Radiguet, P. Pareige, K. Arakawa, and C. Fu, J. Nucl. Mater., 382: 190 (2008). Crossref
  13. A. Wagner, F. Bergner, R. Chaouadi, H. Hein, M. Hernandez-Mayoural, M. Serrano, A. Ulbricht, and E. Altstadt, Acta Mater., 104: 131 (2016). Crossref
  14. M. Kondria and A. Gokhman, Radiation Effects and Defects in Solids: Incorporating Plasma Science and Plasma Technology, 174, Iss. 1-2 (2019). Crossref
  15. F. Bergner, A. Almazouzi, M. Hernandez-Mayoural, M. Lambrecht, and A. Ulbricht, Workshop Proceedings of Structural Materials for Innovative Nuclear Systems (SMINS) (Karlsruhe, Germany, June 4-6, 2007) (Nuclear Energy Agency: 2008), p. 283.
  16. R. Becker and W. Doering, Ann. Phys. Lpz., 24: 719 (1935). Crossref
  17. J. Lepinoux, Acta Mater., 57: 1086 (2009). Crossref
  18. J. Lepinoux, Philos. Mag., 90: 3261 (2010). Crossref
  19. A. Gokhman and J. Boehmert, Radiation Effects and Defects in Solids, 158: 499 (2003). Crossref
  20. A. Gokhman, J. Boehmert, and A. Ulbricht, Radiation Effects and Defects in Solids, 158: 383 (2003). Crossref
  21. K. Nordlund, S. Zinkle, A. Sand et al., Nature Communications, March (2018).
  22. A. Amosov, N. V. Kopchenova, and Yu. A. Dubinskii, Vychislitelnye Metody dlya Inzhenerov (Moscow: Vysshaya Shkola: 1994) (in Russian).
  23. LSODA is Part of the ODEPACK Provided by Alan C. Hindmarsh 1984 on the CASC Server of the Lawrence Livermore National Laboratory (Livermore, CA 94551, USA).
  24. A. Gokhman and F. Bergner, Radiation Effects and Defects in Solids: Incorporating Plasma Science and Plasma Technology, 165: 216 (2010). Crossref
  25. V. Skalozubov, T. Gablaya, I. Kozlov, and E. Leschetnaya, Atomnaya Energetika, 15: 43 (2014) (in Russian).
  26. E. Lifshits and L. Pitaevskii, Fizicheskaya Kinetika (Moscow: Nauka: 1979).
  27. F. Christien and A. Barbu, J. Nucl. Mater., 324: 90 (2004). Crossref
  28. F. Bergner, F. Gillemot, M. Hernández-Mayora, M. Serrano, G. Török, A. Ulbricht, and E. Altstadt, J. Nucl. Mater., 461: 37 (2015). Crossref
  29. X. Hu, X. Donghua, B. Sang, and B. Wirth, Modelling and Simulation in Mater. Sci. Eng., 22: 065002 (2014). Crossref
  30. A. Zeman, L. Debarberis, L. Kupca, B. Acosta, M. Kutka, and J. Degmova, J. Nucl. Mater., 360: 272 (2007). Crossref