Influence of a Constant Magnetic Field, which Acts during Melt Solidification, on the Grains of Al $\alpha$-solid Solution in Al–Cu Alloys

E. V. Seredenko

Physico-Technological Institute of Metals and Alloys, NAS of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 11.10.2018; final version - 18.02.2019. Download: PDF

As determined, with the help of a constant magnetic field it is possible to control the size of the grains of the cast alloy, to enhance the efficiency of the modifying elements, and to affect the quantity of alloying and impurity components contained in the grains of the alloy matrix. Specific features of the distribution of Cu in grains of Al $\alpha$-solid solution, treated with a constant magnetic field, which determine their micro-hardness, are established. As found, the constant magnetic field reduces a dendritic liquation of copper.

Key words: Al–Cu alloy, components’ concentration in grains, micro-hardness, constant magnetic field.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i07/0873.html

DOI: https://doi.org/10.15407/mfint.41.07.0873

PACS: 03.50.De, 61.25.Mv, 61.72.Mm, 64.75.Nx, 81.30.Fb

Citation: E. V. Seredenko, Influence of a Constant Magnetic Field, which Acts during Melt Solidification, on the Grains of Al $\alpha$-solid Solution in Al–Cu Alloys, Metallofiz. Noveishie Tekhnol., 41, No. 7: 873—887 (2019) (in Russian)


REFERENCES
  1. L. F. Mondol'fo, Struktura i Svoystva Alyuminievykh Splavov [Structure and Properties of Aluminium Alloys] (Moscow: Metallurgiya: 1979) (in Russian).
  2. S. Haifang, G. Chunlei, and L. Qing, Nonferrous Metals, No. 1: 14 (2003).
  3. Y. Shen , R. Zhongming, L. Xi, R. Weili, and X. Yan, J. Crystal Growth, 336, No. 1: 67 (2011). Crossref
  4. Z. Ren, J. Iron and Steel Research International, 19, Supl. 1: 18 (2012).
  5. G. Zhigu, X. Fengling, and Z. Weiqiang, Spec. Cast. Nonferrous Alloys, 27, No. 1: 16 (2007).
  6. Yu. V. Kazakov, V. A. Blinkov, and T. P. Polovinkina, Fizika i Khimiya Obrabotki Materialov, No. 2: 77 (1975) (in Russian).
  7. G. N. Pankin, V. O. Esin, V. V. Ponomarev, and A. I. Kataev, Proc. 12-th MHD Riga Symposium (Salaspils: Izdatel'stvo Instituta Fiziki AN Latviyskoy SSR: 1987), vol. 2, p. 107 (in Russian).
  8. T. Liu, Q. Wang, C. Zhany, A. Gao, C. Lou, and J. He, Proc. 7-th International PAMIR Conference on Fundamental and Applied MHD (Pusgu le de Gience: France: 2008), vol. 1, p. 203.
  9. W. L. Ren, Z. M. Ren, T. Zhang, J. W. Dong, X. Li, Y. B. Zhong, K. Deng, Z. S. Lei, and J. T. Gua, Proc. 6-th International Conference on Electromagnetic Processing of Materials (Dresden: Germany: 2009), p. 792.
  10. J. Yu, D. Du, Z. Ren, Y. Fautrelle, R. Moreau, and X. Li, ISIJ International, 57, No. 2: 337 (2017). Crossref
  11. Z. Lu, Y. Zhang, Z. Ren, Y. Fautrelle, and X. Li, ISIJ International, 57, No. 1: 84 (2017). Crossref
  12. N. A. Aristova and I. F. Kolobnev, Termicheskaya Obrabotka Liteynykh Alyuminievykh Splavov [Heat Treatment of Foundry Aluminium Alloys] (Moscow: Metallurgiya: 1977) (in Russian).
  13. Q. Wang, X.-J. Pang, C.-J. Wang, Y.-B. Li, and J.-C. He, Proc. 5-th International Symposium on Electromagnetic Processing of Materials (Sendai: Japan: 2006), p. 387.
  14. V. M. Zhivoderov and T. O. Ananchenko, Liteynoe Proizvodstvo, No. 5: 7 (1986) (in Russian).
  15. S. He, C. Li, R. Guo, W. Xuan, Z. Ren, X. Li, and Y. Zhong, ISIJ International, 58, No. 5: 899 (2018). Crossref