Deformation of Eutectic Composites of LaB$_{6}$–TiB$_{2}$ (ZrB$_{2}$) Systems

O. P. Karasevska$^{1,2}$, T. O. Solovyova$^{2}$, I. I. Bogomol$^{2}$, P. I. Loboda$^{2}$, K. Abramov$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received: 09.10.2018; final version - 12.05.2019. Download: PDF

The paper analyses the laws of deformation of eutectic composites of LaB$_{6}$–TiB$_{2}$ (ZrB$_{2}$) systems with a fibrous type of hardening phase in the temperature range of 600–1600°C. The deformation mechanisms with temperature change are analysed. The low-temperature deformation mechanism is associated with the movement of dislocations in planes with maximum of reticular density and the strength of the composite in this case is determined by the reduced shear stresses in the initial slip system, the secondary slip systems and fibbers are not involved in the deformation process, the material is brittle fractured. In the case of the high-temperature deformation mechanism, LaB$_{6}$–TiB$_{2}$ (ZrB$_{2}$) composites exhibit plasticity, substructural hardening in the matrix, ductile fracture, and the density of dislocations in the fibbers increases and a substructure is formed. The temperature of the transition from low-temperature to high-temperature deformation is determined by a misfit on the matrix–fibber interface and for the LaB$_{6}$–TiB$_{2}$ composite occurs in the region of $\sim$1400°C with the misfit $\sim$1–2%, and for the LaB$_{6}$–ZrB$_{2}$ composite—at a lower temperature $\sim$1000°C with the misfit $\sim$3–4%.

Key words: eutectic composites, deformation mechanisms, reduced stresses, misfit.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i07/0897.html

DOI: https://doi.org/10.15407/mfint.41.07.0897

PACS: 62.20.F-, 62.20.M-, 81.05.Ni, 81.30.-t, 81.40.Lm

Citation: O. P. Karasevska, T. O. Solovyova, I. I. Bogomol, P. I. Loboda, and K. Abramov, Deformation of Eutectic Composites of LaB$_{6}$–TiB$_{2}$ (ZrB$_{2}$) Systems, Metallofiz. Noveishie Tekhnol., 41, No. 7: 897—912 (2019) (in Russian)


REFERENCES
  1. P. I. Loboda, Powder Metall. Met. Ceram., 39, Iss. 9-10: 480 (2000). Crossref
  2. I. Bogomol and P. Loboda, MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments (Eds. I. M. Low, Ch. Hu and Y. Sakka) (IGI Global, USA: 2013), vol. 10, p. 303. Crossref
  3. P. I. Loboda, Fizyko-Khimichni Osnovy Stvorennya Novykh Borydnykh Materialiv dlya Elektronnoyi Tekhniky i Rozrobka Keramichnykh Katodnykh Vuzliv z Pidvyshchennoyu Efektyvnistyu (Disser. … for the Degree of Dr. Techn. Sci.) (Kyiv: National Technical University of Ukraine 'Kyiv Polytechnic Institute': 2004) (in Ukrainian).
  4. D. D. Nesmelov and S. S. Ordanian, Collection of Works for Sci. Symp. 'Aktualnye Problemy Tekhnologii Proizvodstva Sovremennykh Keramicheskikh Materialov' (Oct., 2015), p. 194 (in Russian).
  5. D. A. Zakaryan, Dopovidi NAN Ukrayiny, No. 12: 86 (2014) (in Russian).
  6. I. Bogomol, T. Nishimura, O. Vasylkiv, Y. Sakka, and P. Loboda. J. Alloys Compd., 505, Iss. 1: 130 (2010). Crossref
  7. H. Deng, E. C. Dickey, Y. Paderno, V. Paderno, V. Filippov, and A. Sayir, J. Mater. Sci., 39, Iss. 19: 5987 (2004). Crossref
  8. Yu. Paderno, V. Paderno, and V. Filippov, Japan Sci. Soc., No. 10: 190 (1994).
  9. Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications (Ed. W. Krenkel) (WILEY-VCH Velag GmbH and Co.KGaA: 2008), vol. 6, p. 141. Crossref
  10. S. Seshan, A. Guruprasad, M. Prabha, and A. Sudhakar, J. Indian Inst. Sci., 76: 1 (1996).
  11. Yu. Paderno, V. Paderno, and V. Filippov, AIP Conference Proceedings, 231: 561 (1991). Crossref
  12. I. Bogomol, T. Nishimura, O. Vasylkiv, Y. Sakka, and P. Loboda, J. Alloys Compd., 485, Iss. 1-2: 677 (2009). Crossref
  13. R. Berner and H. Kronmüller, Plastische Verfopmung von Einkristallen (Springer, Berlin, Heidelberg: 1965). Crossref
  14. R. Khonikomb, Plasticheskaya Deformatsiya Metallov (Moscow: Mir: 1972) (in Russian).
  15. G. P. Puare, Vysokotemperaturnaya Plastichnost Kristallicheskikh Tel (Moscow: Metallurgiya: 1982) (in Russian).
  16. Zh. Fridel, Dislokatsii (Moscow: Mir: 1967) (in Russian).
  17. A. Kh. Kottrell, Dislokatsii i Plasticheskoe Techenie Materialov (Moscow: Metallurgizdat: 1958) (in Russian).
  18. E. V. Panin, Yu. V. Grinyaev, T. F. Elsukova, and A. G. Ivanchin, Izv. Vuzov, Fizika, 25, No. 6: 5 (1982).(in Russian). Crossref
  19. E. Tenckhoff, J. ASTM Int., 2, Iss. 4: 1 (2005). Crossref
  20. T. O. Soloviova, O. P. Karasevska, J. Vleugels, and P. I. Loboda, J. Alloys Compd., 729: 749 (2017). Crossref
  21. P. I. Loboda, O. P. Karasevska, and T. O. Soloviova, Metallofiz. Noveishie Tekhnol., 38, No. 9: 1249 (2016) (in Ukrainian). Crossref
  22. A. I. Samoulov, R. M. Nazarkin, N. V. Petrushin, and N. S. Moiseeva, Metally, No. 3: 71 (2011) (in Russian). Crossref
  23. E. N. Kablov, I. L. Svetlov, and N. V. Petrushin, Materialovedenie, No. 4: 32 (1997) (in Russian).
  24. E. N. Kablov, I. L. Svetlov, and N. V. Petrushin, Materialovedenie, No. 5: 14 (1997) (in Russian).