Charge Transport in Heterostructures Based on Two-Gap Superconductors

E. S. Zhitlukhina$^{1,2}$, V. V. Shamaev$^{3}$, V. P. Bloshchytskyi$^{3}$

$^{1}$Donetsk Institute for Physics and Engineering Named after O. O. Galkin, NAS of Ukraine, 46 Nauky Ave., UA-03028 Kyiv, Ukraine
$^{2}$Vasyl’ Stus Donetsk National University, 21 600-richchya Str., UA-21021 Vinnytsia, Ukraine
$^{3}$Donetsk National Technical University, 2 Shybankov Sqr., UA-85300 Pokrovs’k, Ukraine

Received: 02.07.2019. Download: PDF

Charge transport in layered structures formed by a metal injector, a nanoscale insulator, a normal-metal interlayer, and an investigated superconductor is discussed theoretically. As shown, the measurements of the differential conductance of such structures could provide unambiguous evidence for the presence of two energy gaps in the superconductor.

Key words: multilayered heterostructures, superconducting electrode, two-gap model, differential conductance.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i09/1143.html

DOI: https://doi.org/10.15407/mfint.41.09.1143

PACS: 73.40.Gk, 74.45.+c, 74.50.+r, 74.70.Ad, 74.78.Fk, 74.78.Na

Citation: E. S. Zhitlukhina, V. V. Shamaev, and V. P. Bloshchytskyi, Charge Transport in Heterostructures Based on Two-Gap Superconductors, Metallofiz. Noveishie Tekhnol., 41, No. 9: 1143—1151 (2019) (in Russian)


REFERENCES
  1. E. L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford University Press: New York, USA: 2012).
  2. H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett., 3, No. 12: 552 (1959). Crossref
  3. M. Ruby, B. W. Heinrich, J. I. Pascual, and K. J. Franke, Phys. Rev. Lett., 114, No. 15: 157001 (2015). Crossref
  4. S. Sundar, L. S. S. Chandra, M. K. Chattopadhyay, and S. B. Roy, J. Phys.: Con-dens. Matter, 27, No. 4: 045701 (2015). Crossref
  5. M. A. McGuire and D. S. Parker, Phys. Rev. B, 93, No. 6: 064507 (2016). Crossref
  6. V. Yu. Verchenko, R. Khasanov, Z. Guguchia, A. A. Tsirlin, and A. V. Shevelkov, Phys. Rev. B, 96, No. 13: 134504 (2017). Crossref
  7. S. Datta, A. Vasdev, S. Halder, J. Singh, Y. Singh, and G. Sheet, Preprint (2019). https://arxiv.org/pdf/1907.08807.pdf
  8. E. Zhitlukhina, I. Devyatov, O. Egorov, M. Belogolovskii, and P. Seidel, Nanoscale Res. Lett., 11, No. 1: 58 (2016). Crossref
  9. V. M. Svistunov, A. I. Dyachenko, and M. A. Belogolovskii, J. Low Temp. Phys., 31, Nos. 3-4: 339 (1978). Crossref
  10. V. Shaternik, A. Shapovalov, M. Belogolovskii, O. Suvorov, S. Döring, S. Schmidt, and P. Seidel, Mater. Res. Exp., 1, No. 2: 026001 (2014). Crossref
  11. E. Zhitlukhina, M. Dvoranová, T. Plecenik, M. Gregor, M. Belogolovskii, and A. Plecenik, Appl. Nanosci. (2019). Crossref
  12. T. Plecenik, M. Tomášek, M. Belogolovskii, M. Truchly, M. Gregor, J. Noskovič, M. Zahoran, T. Roch, I. Boylo, M. Špankova, Š. Chromik, P. Kúš, and A. Ple-cenik, J. Appl. Phys., 111, No. 5: 056106 (2012). Crossref
  13. M. Truchly, T. Plecenik, E. Zhitlukhina, M. Belogolovskii, M. Dvoranova, P. Kus, and A. Plecenik, J. Appl. Phys., 120, No. 18: 185302 (2016). Crossref