Electrophysical and Magnetic Properties of Arrays of Fibrous Iron-Containing Carbon Nanocomposites

O. M. Sedov$^{1}$, V. V. Holod$^{1}$, S. M. Makhno$^{2}$, O. M. Lisova$^{2}$, M. V. Abramov$^{2}$, S. P. Turanska$^{2}$, P. P. Gorbyk$^{2,3}$

$^{1}$Limited Liability Company ‘Fronteria Ukraine’, 15 Tsymlyanska Str., UA-69008 Zaporizhzhya, Ukraine
$^{2}$O. O. Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., UA-03164 Kyiv, Ukraine
$^{3}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received: 10.04.2019. Download: PDF

The composition, electrophysical and magnetic properties of arrays of iron-containing fibrous carbon nanocomposites (IFCNCs), synthesized using the methods of gas-phase pyrolytic decomposition of acetylene and thermal catalytic carbon deposition in the presence of a catalyst-forming iron-containing concentrate, are studied. In composition of IFCNCs, the carbon nanofibers and multiwall carbon nanotubes (with outer diameter of 10–100 nm, length of 100–1000 nm) are found out, as well as the nanocrystalline phases of magnetite, silica, graphite, iron carbide, with their average size, calculated by the Scherrer formula, of 33, 52, 15, 29 nm, respectively. As shown, the synthesized IFCNC samples are active in the processes of absorption and reflection of electromagnetic waves in the microwave range of 1–80 GHz. The specific magnetization of saturation and the coercive force depend on the chemical composition of the samples, increasing with a growth of mass concentration of the iron-containing component. The investigated IFCNCs are characterized by thermal stability under heating in air up to 300°C. The results of elemental composition, basic structural, electrophysical, magnetic characteristics, and thermal stability investigations of IFCNCs indicate their perspective for production and technical, environmental and technological applications.

Key words: iron-containing carbon nanocomposites, carbon nanofibers, multiwall carbon nanotubes, nanoparticles, electrophysical and magnetic properties.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i09/1153.html

DOI: https://doi.org/10.15407/mfint.41.09.1153

PACS: 61.46.Df, 61.46.Km, 61.48.De, 65.80.-g, 73.63.Fg, 75.20.-g

Citation: O. M. Sedov, V. V. Holod, S. M. Makhno, O. M. Lisova, M. V. Abramov, S. P. Turanska, and P. P. Gorbyk, Electrophysical and Magnetic Properties of Arrays of Fibrous Iron-Containing Carbon Nanocomposites, Metallofiz. Noveishie Tekhnol., 41, No. 9: 1153—1169 (2019) (in Ukrainian)


REFERENCES
  1. O. M. Ivasishin, E. G. Len, V. M. Nadutov, and V. A. Tatarenko, Metallofiz. Noveishie Tekhnol., 38, No. 1: 1 (2016) (in Ukrainian). Crossref
  2. P. Mierczynski, S. V. Dubkov, S. V. Bulyarskii, A. A. Pavlov, S. N. Skorik, A. Y. Trifonov, A. Mierczynska, E. P. Kitsyuk, S. A. Gavrilov, T. P. Maniecki, and D. G. Gromov, J. Mater. Sci. Technol., 34, No. 3: 472 (2018). Crossref
  3. S. Dubkov, I. Gavrilin, A. Dronov, A. Trifonov, A. Dudin, A. Sirotina, D. Gromov, and S. Gavrilov, Materials Today: Proceedings, 5, No. 8, Part 1: 15943 (2018). Crossref
  4. P. P. Gorbyk, S. M. Makhno, I. V. Dubrovin, M. V. Abramov, V. M. Mishchenko, R. V. Mazurenko, A. L. Petranovska, Ie. V. Pylypchuk, and S. L. Prokopenko, Nanosistemi, Nanomateriali, Nanotehnologii, 15, No. 1: 47 (2017) (in Ukrainian).
  5. M. V. Abramov, S. P. Turanska, and P. P. Gorbyk, Metallofiz. Noveishie Tekhnol., 40, No. 4: 423 (2018) (in Ukrainian). Crossref
  6. O. M. Lisova, M. V. Abramov, S. M. Makhno, and P. P. Gorbyk, Metallofiz. Noveishie Tekhnol., 40, No. 5: 625 (2018). Crossref
  7. P. V. Ratnikov and A. P. Silin, UFN, 188: 1249 (2018) (in Russian). Crossref
  8. P. M. Sokolov, M. A. Zvaigzne, V. A. Krivenkov, A. P. Litvin, A. V. Baranov, A. V. Fedorov, P. S. Samokhvalov, and I. R. Nabiev, Uspekhi Khimii, 88, No. 4: 370 (2019) (in Russian). Crossref
  9. M. V. Abramov, P. P. Gorbyk, and V. M. Bogatyrev, Poverkhnost', Iss. 8(23): 223 (2016) (in Ukrainian). Crossref
  10. V. M. Bogatyrov, M. V. Borysenko, O. I. Oranska, M. V. Galaburda, S. M. Makhno, and P. P. Gorbyk, Poverkhnost', Iss. 9(24): 136 (2017) (in Russian). Crossref
  11. S. V. Mishchenko and A. G. Tkachev, Uglerodnye Nanomaterialy. Proizvodstvo, Svoystva, Primenenie [Carbon Nanomaterials. Production, Properties, Application] (Moscow: Mashinostroenie: 2008) (in Russian).
  12. Fizika Poverkhnosti [Physics of Surface] (Eds. M. T. Kartel, V. V. Lobanov) (Kiev: A. A. Chuiko Institute of Surface Chemistry of N.A.S. of Ukraine; OOO 'Interservis': 2015), vol. 2 (in Russian).
  13. I. V. Uvarova, P. P. Gorbyk, S. V. Gorobez', O. A. Ivashchenko, and N. V. Ulyanchenko, Nanomaterialy Medychnogo Pryznachennia [Nanomaterials of Medical Destination] (Ed. V. V. Skorokhod) (Kyiv: Naukova Dumka: 2014) (in Ukrainian).
  14. S. V. Gorobez', O. Yu. Gorobez', P. P. Gorbyk, and I. V. Uvarova, Funktsionalni Bio- ta Nanomaterialy Medychnogo Pryznachennya [Functional Bio- and Nanomaterials of Medical Destination] (Kyiv: Kondor: 2018) (in Ukrainian).
  15. M. M. Nishchenko, H. Yu. Mykhailova, G. P. Prikhodko, M. M. Dashevskyi, and O. I. Nakonechna, Metallofiz. Noveishie Tekhnol., 40, No. 6: 749 (2018). Crossref
  16. A. M. Nesterenko, N. F. Kolesnik, Yu. S. Akhmatov, V. I. Sukhomlin, and O. V. Prilutskiy, Izvestiya AN SSSR. Seriya Metally, No. 3: 12 (1982) (in Russian).
  17. Ye. A. Kats, Energiya: Ekonomika, Tekhnika, Ekologiya, Nos. 3-6 (2008) (in Russian).
  18. A. G. Kirichenko and N. F. Kolesnik, Eastern-European Journal of Enterprise Technologies, 4/6 (52): 12 (2011) (in Russian).
  19. A. G. Kirichenko, Yu. F. Ternovoy, V. O. Panova, and N. V. Lichkonenko, Metalurgiya, Iss. 2 (36): 77 (2016) (in Russian).
  20. N. F. Kolesnik, A. G. Kirichenko, and A. V. Kharchenko, Metalurgiya, Iss. 2 (34): 69 (2016) (in Russian).
  21. C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, S. Angaiah, and Z. Guo, Carbon, 140: 696 (2018). Crossref
  22. L. A. Apresyan, D. V. Vlasov, T. V. Vlasova, V. I. Konov, A. A. Klimanov, and S. V. Terekhov, Zhurnal Tekhnicheskoy Fiziki, 76, No. 12: 92 (2006) (in Russian).
  23. N. V. Borisenko, V. M. Bogatyrev, I. V. Dubrovin, N. V. Abramov, M. V. Gayevaya, and P. P. Gorbyk, Fiziko-Khimiya Nanomaterialov i Supramolekuliarnykh Struktur [Physico-Chemistry of Nanomaterials and Supramolecular Structures] (Eds. A. P. Shpak and P. P. Gorbyk) (Kiev: Naukova Dumka: 2007), v. 1, p. 394 (in Russian).
  24. T. Yamada, T. Namai, K. Hata, D. N. Futaba, K. Mizuno, J. Fan, M. Yudasaka, M. Yumura, and S. Iijima, Nature Nanotechnology, 1: 131 (2006). Crossref
  25. L. M. Jakubek, S. Marangoudakis, J. Raingo, X. Liu, D. Lipscombe, and R. H. Hurt, Biomaterials, 30: 6351 (2009). Crossref
  26. N. F. Kolesnik, S. S. Kudiyevskiy, A. G. Kirichenko, and O. V. Prilutskiy, Termokataliticheskiy Raspad Monooksida Ugleroda [Thermocatalytic Decomposition of Carbon Monooxide] (Zaporizhzha: Izdatelstvo Zaporozhskoy Gosudarstvennoy Inzhenernoy Akademii: 2006) (in Russian).
  27. K. J. MacKenzie, O. M. Dunens, and A. T. Harris, Industrial & Engineering Chemical Research, 49: 5323 (2010).
  28. A. L. Petranovska, N. V. Abramov, S. P. Turanska, P. P. Gorbyk, A. N. Kaminskiy, and N. V. Kusyak, J. Nanostruct. Chem., 5: 275 (2015). Crossref
  29. N. V. Abramov, S. P. Turanska, A. P. Kusyak, A. L. Petranovska, and P. P. Gorbyk, J. Nanostruct. Chem., 6: 223 (2016). Crossref
  30. P. P. Gorbyk, M. V. Abramov, I. V. Dubrovin, S. M. Makhno, and S. P. Turanska, Uspehi Fiziki Metallov, 18: 59 (2017) (in Ukrainian). Crossref