Alloy Based on Intermetallic (Ti, Zr)(V, Mn, Сr)$_{2-x}$ Obtained Using Titanium Sponge for Hydrogen Sorption

V. A. Dekhtyarenko

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 05.05.2019; final version - 16.08.2019. Download: PDF

The microstructure and phase composition of a cast Ti$_{15.4}$Zr$_{30.2}$Mn$_{44}$V$_{5.4}$Сr$_5$ alloy obtained using titanium sponge, as well as the phase composition of hydrogenation product, are investigated by scanning electron microscopy and X-ray phase analysis. As found, the complete replacement of expensive iodide titanium with a relatively cheap titanium sponge does not affect the structure and phase composition of the alloy. As shown, the saturation of the alloy with hydrogen occurs at room temperature and pressure of hydrogen of 0.21 MPa in a short time up to a capacity of 2.12% mass.

Key words: Laves phase, titanium sponge, hydrogenation, dehydrogenation, hydrogen capacity.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i10/1283.html

DOI: https://doi.org/10.15407/mfint.41.10.1283

PACS: 61.66.Dk, 61.72.S-, 64.75.-g, 68.43.Mn, 68.43.Nr, 88.30.R-

Citation: V. A. Dekhtyarenko, Alloy Based on Intermetallic (Ti, Zr)(V, Mn, Сr)$_{2-x}$ Obtained Using Titanium Sponge for Hydrogen Sorption, Metallofiz. Noveishie Tekhnol., 41, No. 10: 1283—1290 (2019)


REFERENCES
  1. Fundamental Aspects of Renewable Hydrogen Energy and Fuel cell Technologies (Ed. Yu. M. Solonin) (Kyiv: KIM: 2018) (in Ukrainian).
  2. H. Taizhong, W. Zhu, Y. Xuebin, C. Jinzhou, X. BaoJia, H. Tiesheng, and X. Naixin, Intermetallics, 12, No.2: 91 (2004). Crossref
  3. X. Yu, B. Xia, Z. Wu, and N. Xu, Mater. Sci. Eng. A, 373, Nos. 1-2: 303 (2004). Crossref
  4. E. A. Anikina and V. N. Verbetsky, Int. J. Hydrogen Energy, 36, No.1: 1344 (2011). Crossref
  5. M. Kazemipour, H. Salimijazi, A. Saidi, A. Saatchi, and A. Arefarjmand, Int. J. Hydrogen Energy, 39, No. 24: 12784 (2014). Crossref
  6. P. Liu, X. Xie, L. Xu, X. Li, and T. Liu, Progress in Natural Science: Materials International, 27, Iss. 6: 652 (2017). Crossref
  7. Zh. Yao, L. Liu, X. Xiao, Ch. Wang, L. Jiang, and L. Chen, J. Alloys Compd., 731: 524 (2018). Crossref
  8. T. V. Pryadko and V. A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol., 40, No. 5: 649 (2018) (in Russian). Crossref
  9. G. F. Kobzenko and A. A. Shkola, Materials Diagnostics, 56: 41 (1990) (in Russian).
  10. O. M. Ivasishin, V. T. Cherepin, V. N. Kolesnik, and M. M. Gumenyuk, Instrumentation and Experimental Technique, 3: 147 (2010) (in Russian).
  11. B. Predel, Cr-Cs...Cu-Zr (Berlin-Heidelberg: Springer-Verlag: 1994).
  12. S. V. Mitrokhin, J. Alloys Compd., 404-406: 384 (2005). Crossref
  13. S. N. Klyamkin, A. Yu. Kovriga, and V. N. Verbetsky, Int. J. Hydrogen Energy, 24, Nos. 2-3: 149 (1999). Crossref