Atomic Composition and Electronic Structure of Hausler Alloys $Me$MnSb ($Me$ = Ni, Pd, Pt)

V. N. Uvarov, N. V. Uvarov, M. V. Nemoshkalenko

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 25.07.2019. Download: PDF

Using zone calculations in the FLAPW (the full-potential linearized augmented plane waves) model information on the energy, charge and spin characteristics of $Me$MnSb ($Me$ = Ni, Pd, Pt) alloys is obtained. As established, the cohesive energies increase in the sequence of alloys PdMnSb $\to$ NiMnSb $\to$ PtMnSb due to the growth of atoms’ interactions covalency, and the alloys are ferromagnetically ordered with increased localization of the magnetic moments on the manganese atoms. As found, the main contribution to the formation of magnetic moments of alloys is made by 3$d$ electrons of manganese atoms with a dominant role of $t_{2g}$ electrons and less contribution of $e_g$-orbitals. The contributions of $s$- and $p$-electrons of manganese and electrons of other atoms to the formation of magnetic moments of alloys are small.

Key words: band structure calculations, Hausler alloys, band structure, magnetic moments, polarized band-structure state, spintronics.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i11/1409.html

DOI: https://doi.org/10.15407/mfint.41.11.1409

PACS: 71.15.Mb, 71.30.+h, 75.76.+j

Citation: V. N. Uvarov, N. V. Uvarov, and M. V. Nemoshkalenko, Atomic Composition and Electronic Structure of Hausler Alloys $Me$MnSb ($Me$ = Ni, Pd, Pt), Metallofiz. Noveishie Tekhnol., 41, No. 11: 1409—1419 (2019) (in Russian)


REFERENCES
  1. Tanja Graf, Claudia Felser, and Stuart S.P. Parkin, Prog. Solid State Chem., 39, Iss. 1: 1 (2011). Crossref
  2. G. E. Bacon and J. S. Plant, J. Phys. F: Metal Phys., 1, No. 4: 524 (1971). Crossref
  3. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B, 66: 134428 (2002). Crossref
  4. Claudia Felser, Gerhard H. Fecher, and Benjamin Balke, Angew. Chem. Int. Ed., 46, Iss. 5: 668 (2007). Crossref
  5. I. Galanakis and P. H. Dederichs, Half-Metallicity and Slater-Pauling Behavior in the Ferromagnetic Heusler Alloys. In: Half-metallic Alloys. Lecture Notes in Physics (Eds. I. Galanakis and P. H. Dederichs), vol. 676 (Berlin, Heidelberg: Springer: 2005). Crossref
  6. M. J. Otto, R. A. M. van Woerden, P. J. van der Valk, J. Wijngaard, C. F. van Bruggen, C. Haas, and K. H. J. Buschow, J. Phys.: Condens. Matter., l, No. 13: 2341 (1989). Crossref
  7. M. J. Otto, H. Feil, R. A. M. Van Woerden, J. Wijngaard, P. J. Van Der Valk, C. F. Van Bruggen, and C. Haas, J. Magn. Magn. Mater., 70, Iss. 1-3: 33 (1987). Crossref
  8. R. B. Helmholdt, R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow et al., J. Magn. Magn. Mater., 43, Iss. 3: 249 (1984). Crossref
  9. K. H. J. Buschow, P. G. van Engen, and R. Jongebreur, J. Magn. Magn. Mater., 38, Iss. 1: 1 (1983). Crossref
  10. P. J. Webster and K. R. A. Ziebeck, J. Magn. Magn. Mater., 1, Iss. 15-18, Part 1: 473 (1980). Crossref
  11. K. Watanabe, J. Phys. Soc. Jap., 28, No. 2: 302 (1970). Crossref
  12. B. R. K. Nanda and I. Dasgupta, J. Phys.: Condens. Matter., 17, No. 33: 5037 (2005). Crossref
  13. D. Jung, H.-J. Koo, and M.-H. Whangbo, J. Mol. Struct., 527, Iss. 1-3: 113 (2000). Crossref
  14. D. Orgassa, H. Fujiwara, T. C. Schulthess, and W. H. Butler, Phys. Rev. B, 60, Iss. 19: 13237 (1999). Crossref
  15. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett., 50, Iss. 25: 2024 (1983). Crossref
  16. A. Szytula, Acta Phys. Pol. A, 43, No. 6: 787 (1973).
  17. David J. Singh and Lars Nordstrom, Planewaves, Psedopotentials and LAPW Method (Kluwer Academic: 2006).
  18. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, Iss. 18: 3865 (1996). Crossref
  19. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, and L. D. Marks, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology and Institute of Materials Chemistry: Vienna, Austria: 2019).
  20. http://www.wien2k.at/reg_user/faq/
  21. Dzh. Marrel, S. Kettl, and Dzh. Tedder, Teoriya Valentnosti (Moscow: Mir: 1968) (in Russian).
  22. A. Szytuła, Ž. Dimitrijević, J. Todorović, A. Kołodziejczyk, J. Szelag, and A. Wanic, phys. status solidi (a), 9, Iss. 1: 97 (1972). Crossref
  23. A. Kimura, S. Suga, T. Shishidou, S. Imada, T. Muro, S. Y. Park, T. Miyahara, T. Kaneko, and T. Kanomata, Phys. Rev. B, 56, Iss. 10: 6021 (1997). Crossref