Influence of Annealing in Vacuum on Dispersion of Chromium Nanofilms Deposited onto Oxide Materials

І. І. Gab, Т. V. Stetsyuk, B. D. Kоstyuk, Yu. V. Naidich

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 20.02.2019. Download: PDF

The behaviour of nickel nanofilms 150 nm thickness deposited onto alumina ceramics, leucosapphire and zirconia ceramics and annealed in vacuum at temperatures up to 1100°C for different times (5–20 min) at each temperature was studied. As found, the films onto all oxides after annealing at temperatures up to 1000°C behave identically and preserve their integrity predominantly. With an increase in the annealing temperature up to 1100°С, the film begins to disperse intensively. The kinetic curves of films decomposition on all oxides are constructed depending on the annealing temperature and the exposure time at each temperature.

Key words: kinetics, disintegration, nickel nanofilm, annealing, oxide material.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i12/1575.html

DOI: https://doi.org/10.15407/mfint.41.12.1575

PACS: 68.35.-p, 68.47.Gh, 68.55.-a, 81.40.Ef

Citation: І. І. Gab, Т. V. Stetsyuk, B. D. Kоstyuk, and Yu. V. Naidich, Influence of Annealing in Vacuum on Dispersion of Chromium Nanofilms Deposited onto Oxide Materials, Metallofiz. Noveishie Tekhnol., 41, No. 12: 1575—1585 (2019) (in Ukrainian)


REFERENCES
  1. V. N. Batygin, I. I. Metelkin, and A. M. Reshetnikov, Vakuumnoplotnaya Keramika i Eho Spai s Metallami (Moscow: Energiya: 1982) (in Russian).
  2. V. Ye. Khryapin, Spravochnik Payal'shchika (Moscow: Mashinostroenie: 1981) (in Russian).
  3. I. I. Metelkin, M. A. Pavlov, and N. V. Pozdeeva, Svarka Keramiki s Metallami (Moscow: Metallurgiya: 1977) (in Russian).
  4. T. Qiao-ying, C. Lai-Fei, and Z. Li-Tong, J. Aviation Material, 24, No. 1: 53 (2004) (in Chinese).
  5. N. Masaaki, S. Tohru, and O. Ikuo, Transactions of JWRI, 17, No. 2: 67 (1988).
  6. M. L. Shalz, B. J. Dalgleish, A. P. Tomsia, and A. M. Glaeser, J. Mater. Sci., 29, Iss. 14: 3678 (1994). Crossref
  7. R. A. Marks, J. D. Sugar, and A. M. Glaeser, J. Mater. Sci., 36, No. 23: 5609 (2001). Crossref
  8. R. A. Marks, D. R. Chapmen, D. T. Danielson, and A. M. Glaeser, Acta Mater., 48, Nos. 18-19: 4425 (2000). Crossref
  9. Yu. V. Naidich, Kontaktnyye Yavleniya v Metallicheskikh Rasplavakh (Kyiv: Naukova Dumka: 1972) (in Russian).
  10. Yu. V. Naidich, I. I. Gab, B. D. Kostyuk, T. V. Stetsyuk, D. I. Kurkova, and S. V. Dukarov, Tekhnika Mashinostroyeniya, 1: 29 (2006) (in Russian).
  11. D. G. Gromov, S. A. Gavrilov, Ye. N. Redichev, and R. M. Amosov, Fizika Tverdogo Tela, 49, No. 1: 2012 (2009) (in Russian).
  12. T. A. Tochitskiy and V. M. Fedosyuk, Elektroliticheski Osazhdennye Nanostruktury (Minsk: BGU: 2002) (in Russian).
  13. B. S. Lunin and S. N. Torbin, Vestnik Moskovskogo Universiteta. Ser. 2. Khimiya, 45, No. 5: 297 (2004) (in Russian).
  14. H. Masuda, H. Asoh, M. Watanabe, and T. Tamamura, Adv. Mater., 13, No. 3: 189 (2001). Crossref
  15. Z. L. Xiao, C. Y. Han, U. Welp, H. H. Wang, V. K. Vlasko-Vlasov, W. K. Kwok, D. J. Miller, J. M. Hiller, R. E. Cook, G. A. Willing, and G. W. Crabtree, Appl. Phys. Lett., 81, No. 15: 2869 (2002). Crossref
  16. D. Navas, M. Hernandez-Velez, M. Vazques, W. Lee, and K. Nielsch, Appl. Phys. Lett., 90, No. 19: 192501 (2007). Crossref
  17. S. Metfessel, Tonkie Plyonky, Ikh Izgotovlenie i Izmerenie (Moscow-Leningrad: Gosenergoizdat: 1963) (in Russian).
  18. G. Khaas and R. E. Tun, Fizika Tonkikh Plyonok (Moscow: Mir: 1968) (in Russian).
  19. Yu. V. Naidich, I. I. Gab, B. D. Kostyuk, T. V. Stetsyuk, D. I. Kurkova, and S. V. Dukarov, Dopovidi Natsionalnoyi Akademii Nauk Ukrayiny, 35: 97 (2007) (in Russian).