Structure and Mechanical Properties of AK15 Silumin Reinforced with Microscale High-Modulus Particles

O. A. Shcheretskyi, D. S. Kanibolotsky, A. M. Verkhovliuk, A. H. Potrukh

Physico-Technological Institute of Metals and Alloys, NAS of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 16.06.2019; final version - 30.10.2019. Download: PDF

The effects of amount, dispersion, nature and doping method of reinforcing particles on the structural parameters and mechanical properties of the AK15 aluminium alloy are investigated. Micro-sized particles of aluminium oxide, silicon carbide and VK6 hard alloy (94% WC, 6% Co) are used as the reinforcing phases. The particles content varied from 0.5 to 5% wt. in the composites. As established, the composites have a more dispersed structure than the original matrix alloy, $i.e.$ the particles act as refining agents. The silumin with 0.5–1% microparticles shows increased tensile strength and specific elongation, which may be associated with the refinement of the alloy structural elements. However, a further increase in the reinforcing phase content leads to a deterioration of the mechanical properties, which is explained as a result of the particles agglomeration.

Key words: AK15, Al$_2$O$_3$, SiC, VK6, composites, structure, mechanical properties.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i02/0251.html

DOI: https://doi.org/10.15407/mfint.42.02.0251

PACS: 62.20.F-, 62.20.mm, 81.05.Ni, 81.30.Bx, 83.80.Ab

Citation: O. A. Shcheretskyi, D. S. Kanibolotsky, A. M. Verkhovliuk, and A. H. Potrukh, Structure and Mechanical Properties of AK15 Silumin Reinforced with Microscale High-Modulus Particles, Metallofiz. Noveishie Tekhnol., 42, No. 2: 251—260 (2020) (in Ukrainian)


REFERENCES
  1. A. Ureña, M. D. Escalera, P. Rodrigo, J. L. Baldonedo, and L. Gil, J. Microsc., 201, Iss. 2: 122 (2001). Crossref
  2. K. Suganuma, J. Mater. Res., 8, Iss. 10: 2569 (1993). Crossref
  3. E. I. Kurbatkina, D. V. Kosolapov, L. G. Khodykin, and M. S. Nigmetov, Aviatsionnye Materialy i Tekhnologii, No. S6: 35 (2014) (in Russian). Crossref
  4. O. A. Shcheretskiy, Metaloznavstvo ta Obrobka Metaliv, No. 2: 40 (2009).
  5. COST 507: Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys (Eds. I. Ansara, A. T. Dinsdale, and M. H. Rand), European Cooperation in the Field of Scientific and Technical Research, European Commission. Vols. 1-3 (Luxembourg: Office for Official Publications of the European Communities: 1998).
  6. O. A. Shcheretskiy, D. S. Kanibolotskyi, and A. M. Verkhovlyuk, Protsesy Littya, No. 3: 68 (2018) (in Ukrainian).
  7. T. A. Chernysheva, A. P. Panfilov, L. I. Kobeleva, and M. I. Tylkina, Fizika i Khimiya Obrabotki Materialov, No. 3: 129 (1993) (in Russian).
  8. S. Towata and S. Yamada, Trans. Jap. Inst. Metals., 27, Iss. 9: 709 (1986). Crossref
  9. S. Ushigome, L. Yamamoto, and T. Soeda, Tetsu-to-Hagane, 75, Iss. 9: 1549 (1989). Crossref