Mechanical and Thermoelectric Properties of PbSe$_{1–x}$Te$_x$ Semiconductor Solid Solutions ($x$ = 0–0.045)

O. S. Vodoriz, T. V. Tavrina, G. O. Nikolaenko, O. I. Rogachova

National Technical University ‘Kharkiv Polytechnic Institute’, 2 Kyrpychova Str., UA-61002 Kharkiv, Ukraine

Received: 10.06.2019; final version - 20.01.2020. Download: PDF

The room-temperature dependences of microhardness $H$, Seebeck coefficient $S$ and electrical conductivity $\sigma$ on the substitution of both the cast and hot pressed samples of PbSe$_{1–x}$Te$_x$ ($x$ = 0–0.045) solid solution are obtained. As established, all of samples have a $p$-type of conductivity. Concentration anomalies in the dependences of $H(x)$, $S(x)$ and $\sigma(x)$ in the vicinity of $x$ = 0.01 and 0.02 for both the cast and pressed samples are detected. The existence of anomalies is connected with the interaction of atoms in the impurity subsystem of crystal under transition from the diluted solid solution to concentrated one. As shown, a method of preparing (cast or hot pressed samples) has no impact on the existence of anomalous areas in composition dependences of solid solution properties, but slightly changes their character. The non-monotonic character of the properties should be taken into account in practical application of PbSe$_{1–x}$Te$_x$ solid solutions.

Key words: PbSe$_{1–x}$Te$_x$ solid solutions, polycrystals, pressing, microhardness, Seebeck coefficient, electrical conductivity, percolation threshold.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i04/0487.html

DOI: https://doi.org/10.15407/mfint.42.04.0487

PACS: 62.20.-x, 64.60.ah, 72.10.Fk, 72.15.Jf, 72.20.-i

Citation: O. S. Vodoriz, T. V. Tavrina, G. O. Nikolaenko, and O. I. Rogachova, Mechanical and Thermoelectric Properties of PbSe$_{1–x}$Te$_x$ Semiconductor Solid Solutions ($x$ = 0–0.045), Metallofiz. Noveishie Tekhnol., 42, No. 4: 487—495 (2020) (in Ukrainian)


REFERENCES
  1. CRC Handbook of Thermoelectrics (Ed. D. M. Rowe) (London, New York, Wash-ington, Boca Raton: CRC Press: 1995).
  2. E. Rogacheva and O. Nashchekina, Advanced Thermoelectric Materials (Ed. Ch. R. Park) (Hoboken, NJ, USA: Scrivener Publishing Wiley: 2019), p. 383. Crossref
  3. E. I. Rogacheva, A. A. Drozdova, and M. S. Dresselhaus, Proc. of XXV Int. Conf. on Thermoelectrics (Austria, Vienna, 2006), p. 107. Crossref
  4. E .I. Rogacheva and O. S. Vodorez, J. Thermoelectricity, 2: 61 (2013).
  5. E. I. Rogacheva, O. S. Vodorez, O. N. Nashchekina, and M. S. Dresselhaus, phys. status solidi (b), 251: 1231 (2014). DOI: 10.1002/pssb.201350293 Crossref
  6. O. S. Vodorez and E. I. Rogacheva, Scientific Herald of Uzhhorod University. Series Physics, 24: 217 (2009) (in Russian).
  7. N. Boukhris, H. Meradji, S. Ghemid, S. Drablia, and F. E. H. Hassan, Phys. Scr., 83, No. 6: 065701 (2011). Crossref
  8. J. Li, S. P. Li, and Q. B. Wang, J. Alloys Compd., 509, No. 13: 4516 (2011). Crossref
  9. E. A. Gurieva, P. P. Konstantinov, L. V. Prokof'ev, Yu. I. Ravich, and M. I. Fedorov, Fizika i Tekhnika Poluprovodnikov, 37, No. 3: 292 (2003) (in Russian).
  10. A. N. Veis, V. I. Kaidanov, R. Yu. Krupitskaya, R. B. Mel'nik, and S. A. Nemov, Fizika i Tekhnika Poluprovodnikov, 14, No. 12: 2349 (1980) (in Russian).
  11. N. A. Erasova, Neorganicheskie Materialy, 14, No. 5: 870 (1978) (in Russian).
  12. O. S. Vodorez, A. A. Mesechko, V. I. Pinegin, and E. I. Rogacheva, Novye Tekhnologii, 2: 118 (2008) (in Russian).
  13. O. S. Vodoriz, T. V. Tavrina, and O. I. Rogachova, Proc. Xth International Sci-etific and Practical Conference 'Electronics and Information Technologies' (ELIT-2018), p. B-49. Crossref
  14. D. Stauffer and A. Aharony Introduction to Percolation Theory (Washington, DC: Taylor&Fransis: 1992).