Superplastic Deformation of 01420T Alloy with Initial Bimodal Grain Structure

D. E. Milaya$^{1,2}$, V. P. Poyda$^{1}$, V. V. Bryukhovetsky$^{2}$, A. V. Poyda$^{2}$

$^{1}$V. N. Karazin Kharkiv National University, 4 Svobody Sqr., UA-61022 Kharkiv, Ukraine
$^{2}$Institute of Electrophysics and Radiation Technologies NAS of Ukraine, 28 Chernyshevsky Str., UA-61002 Kharkiv, Ukraine

Received: 05.03.2019; final version - 16.01.2020. Download: PDF

Mechanical tests of aluminium 01420T alloy (system Al–Mg–Li) specimens are performed and temperature-strain rate conditions are determined under which specimens of this alloy with the initial bimodal grain structure exhibit a superplastic effect. Structural changes occurring in specimens of the studied alloy during the superplastic deformation are investigated. As determined, during the superplastic deformation the microstructure of alloy specimens becomes homogeneous and ultrafine-grained. In the working part of the 01420T alloy specimens during superplastic deformation, as a result of viscous flow, fibrous structures are formed. They are localized in grain-boundary pores and cracks.

Key words: superplasticity, bimodal grain structure, fibers, aluminium alloy.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i04/0511.html

DOI: https://doi.org/10.15407/mfint.42.04.0511

PACS: 61.72.Ff, 61.72.Mm, 62.20.fq, 62.20.mm, 81.40.Lm, 81.70.Bt, 83.50.Uv

Citation: D. E. Milaya, V. P. Poyda, V. V. Bryukhovetsky, and A. V. Poyda, Superplastic Deformation of 01420T Alloy with Initial Bimodal Grain Structure, Metallofiz. Noveishie Tekhnol., 42, No. 4: 511—529 (2020) (in Ukrainian)


REFERENCES
  1. X. Wang, Q. Li, R. Wu, X. Zhang, and L. Ma, Advances in Materials Science and Engineering, 2018: 7606140 (2018). Crossref
  2. Superplastic Forming of Structural Alloys (Eds. N. E. Paton and C. H. Hamilton) (San Diego, California: The Metallurgical Society of AIME: 1982).
  3. O. A. Kaybyshev, Sverkhplastichnost' Promyshlennykh Splavov [Superplasticity of Industrial Alloys] (Moscow: Metallurgiya: 1984) (in Russian).
  4. V. N. Shcherba, Pressovanie Alyuminievykh Splavov [Pressing of Aluminium Alloys] (Moscow: Intermet Inzhiniring: 2001) (in Russian).
  5. I. N. Fridlyander, K. V. Chuistov, A. L. Berezina, and N. I. Kolobnev, Alyuminiy-Litievye Splavy. Struktura i Svoystva [Aluminum-Lithium Alloys. Structure and Properties] (Kyiv: Naukova Dumka: 1992) (in Russian).
  6. N. F. Yunusova, R. K. Islamgaliev, and R. Z. Valiev, Metally, No. 2: 21 (2004).
  7. M. M. Myshlyaev, M. Y. Gryaznov, and V. N. Chuvildeev, Russian Metallurgy (Metally), 2011: 882 (2011). Crossref
  8. R. S. Mishra, R. Z. Valiev, S. X. McFadden, R. K. Islamgaliev, and A. K. Mukherjee, Philos. Mag. A, 81: 37 (2001). Crossref
  9. V. P. Poyda, D. E. Milaya, A. V. Poyda, V. V. Bryukhovetskiy, and R. V. Sukhov, Voprosy Atomnoy Nauki i Tekhniki. Seriya 'Fizika Radiatsionnykh Povrezhdeniy i Radiatsionnoe Materialovedenie', No. 4: 139 (2014) (in Russian).
  10. V. P. Poida, V. V. Bryukhovetskii, A. V. Poida, R. I. Kuznetsova, V. F. Klepikov, and D. L. Voronov, Phys. Met. Metallogr., 103, No. 4: 414 (2007). Crossref
  11. E. E. Tomashevskiy and A. I. Slutsker, Zavodskaya Laboratoriya, 29, No. 8: 994 (1963) (in Russian).
  12. S. A. Saltykov, Stereometricheskaya Metallografiya [Stereometric Metallography] (Moscow: Metallurgiya: 1976) (in Russian).
  13. V. P. Poida, D. E. Pedun, V. V. Bryukhovetskii, A. V. Poida, R. V. Sukhov, A. L. Samsonik, and V. V. Litvinenko, Phys. Met. Metallogr., 114, No. 9: 779 (2013). Crossref
  14. V. V. Bryukhovetsky, A. V. Poyda, V. P. Poyda, and D. E. Milaya. Voprosy Atomnoy Nauki i Tekhniki. Seriya 'Fizika Radiatsionnykh Povrezhdeniy i Radiatsionnoe Materialovedenie', No. 2: 94 (2018).
  15. M. G. Zelin, Acta mater., 45: Iss. 9: 3533 (1997). Crossref
  16. A. V. Poyda, V. P. Poyda, V. V. Bryukhovetskyy, D. E. Myla, and A. V. Zavdoveev, Metallofiz. Noveishie Tekhnol., 39, No. 10: 1345 (2017) (in Ukrainian). Crossref
  17. V. P. Pojda, V. V. Bryukhovets’ky, R. I. Kuznetsova, A. V. Pojda, and V. F. Klepikov, Metallofiz. Noveishie Tekhnol., 25, No. 1: 117 (2003) (in Russian).
  18. A. V. Pojda, V. V. Bryukhovets’ky, D. L. Voronov, R. I. Kuznetsova, and V. F. Klepikov, Metallofiz. Noveishie Tekhnol., 27, No. 3: 317 (2005) (in Russian).
  19. V. V. Bryukhovetskii, V. P. Poida, A. V. Poida, R. I. Kuznetsova, K. A. Mahmoud, and D. E. Pedun, Phys. Met. Metallogr., 110, No. 6: 588 (2010). Crossref
  20. D. E. Pedun, V. P. Poyda, V. V. Bryukhovetskiy, A. V. Poyda, and R. V. Sukhov, Voprosy Atomnoy Nauki i Tekhniki. Seriya 'Fizika Radiatsionnykh Povrezhdeniy i Radiatsionnoe Materialovedenie', No. 5: 147 (2013) (in Russian).
  21. V. V. Bryukhovetskii, A. V. Poida, V. P. Poida, and Yu. V. Kolomak, Phys. Met. Metallogr., 112, No. 5: 526 (2011). Crossref
  22. V. V. Bryukhovetskiy, A. V. Poyda, V. P. Poyda, V. F. Klepikov, and Yu. V. Kolomak, Voprosy Atomnoy Nauki i Tekhniki. Seriya 'Fizika Radiatsionnykh Povrezhdeniy i Radiatsionnoe Materialovedenie', No. 4: 78 (2011) (in Russian).
  23. C. L. Chen and M. J. Tan, Mater. Sci. Eng. A, 298: 235 (2001). Crossref
  24. W. D. Cao, X. P. Lu, and H. Conrad, Acta. Mater., 44, No. 2: 697 (1996). Crossref
  25. J. Koike, M. Mabuchi, and K. Higashi, Acta Met. Mater., 43, No. 1: 199 (1995). Crossref
  26. V. I. Dobatkin, R. M. Gabidullin, B. A. Kolachev, and G. S. Makarov, Gazy i Okisly v Alyuminievykh Deformiruemykh Splavakh [Gases and Oxides in Deformable Aluminium Alloys] (Moscow: Metallurgiya: 1976) (in Russian).
  27. M. V. Mal'tsev, Yu. D. Chistyakov, and M. I. Tsypin, DAN SSSR, 49, No. 5: 813 (1954) (in Russian).
  28. I. N. Fridlyander, V. S. Sandler, T. I. Nikol'skaya et al., Metally, 2: 221 (1978) (in Russian).
  29. A. M. Korol'kov, Liteynye Svoystva Metallov i Splavov [Foundry Properties of Metals and Alloys] (Moscow: Nauka: 1967) (in Russian).
  30. M. Mabuchi and K. Higashi, Acta Mater., 47, No. 6: 1915 (1999). Crossref