Martensitic Transformation in Quenched Hf–Nb Alloys

S. Kedrovskyi, Yu. Koval, V. Slepchenko, O. Bezsmertna

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 26.11.2019. Download: PDF

Martensitic transformation and shape memory effect are investigated in Hf–Nb alloys. Niobium content varies in a range of 15 at.% to 50 at.%. Prior to investigation samples are quenched in water. Phase composition, microstructure and functional properties are investigated. For the first time the presence of a martensitic-type phase transition, accompanied by the shape memory effect, is observed in the quenched Hf$_{75}$Nb$_{25}$ alloy. While for alloys with a higher concentration of hafnium, the quenching temperature will be obviously higher than 1500°C.

Key words: Hf–Nb alloys, martensitic transformation, shape memory.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i05/0603.html

DOI: https://doi.org/10.15407/mfint.42.05.0603

PACS: 61.66.Dk, 62.20.fg, 64.70.kd, 81.30.kf, 81.40.Ef, 81.65.Kn

Citation: S. Kedrovskyi, Yu. Koval, V. Slepchenko, and O. Bezsmertna, Martensitic Transformation in Quenched Hf–Nb Alloys, Metallofiz. Noveishie Tekhnol., 42, No. 5: 603—610 (2020)


REFERENCES
  1. S. Banerjee and P. Mukhopadhyay, Pergamon Materials Series, 12: 840 (2007).
  2. A. V. Dobromyslov and V. A. Elkin, Scr. Mater., 44: 905 (2001). Crossref
  3. H. Y. Kim , T. Sasaki, K. Okutsu, J. I. Kim, T. Inamura , H. Hosoda, and S. Miyazaki, Acta Mater., 54: 423 (2006). Crossref
  4. Q. Guo, Yo. Zhan, H. Mo, and G. Zhang, Materials and Design, 31: 4842 (2010). Crossref
  5. V. Brailovski, S. Prokoshkin, M. Gauthier, K. Inaekyan, S. Dubinskiy, M. Petrzhik, and M. Filonov, Mater. Sci. Eng. C, 31: 643 (2011). Crossref
  6. T. Ahmed and H. J. Rack, J. Mater. Sci., 31: 4267 (1996). Crossref
  7. J. A. Davidson, K. P. Daigle, and P. Kovacs, Artificial Organs, 20(6): 513 (1996). Crossref
  8. H. Okamoto, J. Phase Equilibria, 12, Iss. 2: 211 (1991). Crossref
  9. S. Banumathy, R. K. Mandal, and A. K. Singh, J. Appl. Phys., 106: 093518 (2009). Crossref
  10. Yu. M. Koval’, S. S. Kovbosha, V. V. Odnosum, V. M. Slipchenko, and G. S. Firstov, Metallofiz. Noveishie Tekhnol., 32, No. 12: 1681 (2010) (in Russian).
  11. T. Inamura, Y. Fukui, H. Hosoda, K. Wakashima, and S. Miyazaki, Mater. Sci. Eng., 25: 426 (2005). Crossref
  12. S. N. Kedrovsky, Yu. N. Koval', and V. N. Slepchenko, Metallofiz. Noveishie Tekhnol., 36, No. 12: 1651 (2014) (in Russian). Crossref
  13. F. Okabe, H. Y. Kima, and S. Miyazaki, Scr. Mater., 162: 412 (2019). Crossref
  14. V. V. Martinov and L. G. Handros, FMM, 39, No. 5: 1037(1975) (in Russian).
  15. N. I. Taluc, Zakonomernosti Strukturnykh i Fazovykh Prevrashcheniy v Tsirkonii i Ego Splavakh s Perekhodnymi Metallami IV-VIII Grupp Periodicheskoy Sistemy Elementov (Thesis of Disser. for Dr. Phys.-Math. Sci.) (Yekaterinburg: 2006) (in Russian).
  16. R. Kondo, N. Nomura, Suyalatu, Y. Tsutsumi, H. Doi, and T. Hanawa, Acta Biomater., 12: 4278 (2011). Crossref
  17. W. A. Jackson, A. J. Perkins, and R. F. Hehemann, Metallurgical Transactions, 1: 2014 (1970). Crossref
  18. Wendell B. Jones, R. Taggart, and D. H. Polonis, Metallurgical Transactions A, 9: 723 (1978). Crossref