Structural State and Physicochemical Properties of Al–Cu System Alloys

N. Yu. Filonenko$^{1,2}$, O. I. Babachenko$^{1}$, G. A. Kononenko$^{1}$

$^{1}$Z. I. Nekrasov Iron and Steel Institute, NAS of Ukraine, 1 Academician Starodubov Sqr., 49050 Dnipro, Ukraine
$^{2}$State Institution ‘Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine’, 9 Volodymyr Vernadsky Str., 49044 Dnipro, Ukraine

Received: 20.05.2019; final version - 22.03.2020. Download: PDF

The studies are carried out for the specimens of Al–Cu alloys with copper content of 25.0–36.0% wt.; the rest is aluminium. The as-cast hypoeutectic and hypereutectic alloys are in the structural state corresponding to the state diagram of Al–Cu system. The overheating of the melts with copper content of 25.0–36.0% wt. to 50–100 K above the liquidus line and following cooling lead to formation of the fine-dispersed eutectic structure and to suppression of the forming of primary aluminium crystals in hypoeutectic alloys, as well as to suppression of Al$_{2}$Cu phase growth in hypereutectic alloys. The increasing of overheating temperature of the melts of hypoeutectic and hypereutectic alloys to 150 K above the liquidus line and following cooling with a rate of 10$^{3}$ K/s result in the complete suppression of the forming of primary aluminium crystals in hypoeutectic alloys and Al$_{2}$Cu phase in hypereutectic alloys. The overheating of Al–Cu melt affects not only the volume fraction of eutectics, but also its morphology and physicochemical characteristics. The corrosion tests of hypoeutectic and hypereutectic alloys after overheating of the melt to 100–150 K above the liquidus line and after following cooling show that the rate of corrosion in acid and alkaline environments is lower compared with the specimens without treatment in a liquid state. The overheating of the alloy melt to 100–150 K above the liquidus line and following cooling lead to decreasing the rate of corrosion on 30–45% and an alloy brittleness by 1.2–1.35 times, and increasing a relative wear resistance by factor of 1.3–1.45 in comparison with corresponding values for the specimens without overheating.

Key words: Al–Сu system alloys, structural state, physicochemical properties.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i05/0611.html

DOI: https://doi.org/10.15407/mfint.42.05.0611

PACS: 61.25.Mv, 61.66.Dk, 61.72.-y, 62.20.mj, 62.20.Qp, 81.40.Ef, 81.40.Np

Citation: N. Yu. Filonenko, O. I. Babachenko, and G. A. Kononenko, Structural State and Physicochemical Properties of Al–Cu System Alloys, Metallofiz. Noveishie Tekhnol., 42, No. 5: 611—620 (2020) (in Ukrainian)


REFERENCES
  1. J. L. Murray, International Metals Reviews, 30, No. 5: 211 (1985). Crossref
  2. S. Habibi, B. Jaleh, A. Namdarmanesh, and M. Shamlo, Mater. Sci. Applications, 5: 491 (2014). Crossref
  3. T. Zheng, B. Zhou, Yu. Zhong, J. Wang, S. Shuai, Zh. Ren, F. Debray, and E. Beaugnon, Sci. Reports, 9: 266 (2019). Crossref
  4. E. Sondermann, N. Jakse, K. Binder, A. Mielke, D. Heuskin, F. Kargl, and A. Meye, Phys. Rev. B, 99: 024204-1 (2019). Crossref
  5. Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, S. Eckert, B. Willers, and K. Eigenfeld, Metall. Mater. Trans. A, 39, No. 12: 3040 (2008). Crossref
  6. E. V. Kalashnikov, Technical Physics, 42, No. 4: 330 (1997). Crossref
  7. O. S. Roik, V. P. Kazimirov, V. E. Sokolskii, and S. M. Galushko J. Non-Cryst. Solids 364: 34 (2013). Crossref
  8. J. Brillo, A. Bytchkov, I. Egry, L. Hennet, G. Mathiak, I. Pozdnyakova, D. L. Price, D. Thiaudiere, and D. Zanghi, J. Non-Cryst. Solids, 352: 4008 (2006). Crossref
  9. W. Y. Wang, J. J. Han, H. Z. Fang, J. Wang, Y. F. Liang, S. L. Shang, Y. Wang, X. J. Liu, L. J. Kecskes, S. N. Mathaudhu, X. Hui, and Z. K. Liu, Acta Mater., 97: 75 (2015). Crossref
  10. S. G. Menshikova, I. G. Brodova, T. I. Yablonskih, and V. V. Astafyev, J. Mater. Sci., 1: 1 (2017).
  11. W. C. Oliver and G. M. Prahn, J. Mater. Res., 12, No. 6: 564 (2008).
  12. S. V. Tverdokhlebova, Visn. Dnipr. Nats. Univ. Ser. Fiz. Radioelektron., Iss. 14, No. 12/1: 100 (2007).
  13. N. V. Novikov, S. N. Dub, and S. I. Bulycho, Zavod. Lab., No. 7: 60 (1988) (in Russian).
  14. Y. Y. Yurkov and H. Y. Strohanov, Trenie i Iznos, 10, No. 7: 12 (1989) (in Russian).
  15. Y. V. Semenova, H. M. Floryanovych, and A. V. Khoroshylov, Korroziya i Zashchita ot Korrozii [Corrosion and Corrosion Prevention] (Moscow: Fizmatlit: 2006) (in Russian).