Impact of Impurity Atoms on the Electrophysical Properties of Magnetic Tunnel Junction

V. O. Burlakov, O. E. Pogorelov, O. V. Filatov

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 12.02.2020; final version - 19.03.2020. Download: PDF

This work describes the effect of the impurity atoms on the current–voltage (I–V) characteristics of the thin-film structure of magnetic tunnel junction (MTJ) of Fe/MgO/Fe in order to improve the electrotransport properties. This is achieved by creating in the structure the conditions for the occurrence of I–V characteristic with negative differential resistance (NDR), such as the I–V characteristic of a tunnel diode. The formation of this property is justified due to the introduction of electrically conductive impurity atoms (Carbon) into the interface space between one of the iron layers and the dielectric, which accordingly changes the position of the Fermi level. The manifestation of the destabilizing effect of electrodiffusion processes on the properties of the I–V characteristics is revealed, and means for its stabilization are proposed. The possibility of using MTJ systems with NDR to create MRAM memory cells is considered.

Key words: spintronics, MTJ, Fermi energy, I–V characteristic, negative differential resistance, electrodiffusion.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i07/0919.html

DOI: https://doi.org/10.15407/mfint.42.07.0919

PACS: 71.20.-b, 71.55.-i, 72.20.Ht, 75.50.Bb, 85.75.Dd

Citation: V. O. Burlakov, O. E. Pogorelov, and O. V. Filatov, Impact of Impurity Atoms on the Electrophysical Properties of Magnetic Tunnel Junction, Metallofiz. Noveishie Tekhnol., 42, No. 7: 919—928 (2020) (in Ukrainian)


REFERENCES
  1. T. Uemura, S. Honma, T. Marukame, and M. Yamamoto, Japanese J. Applied Physics, 43, No. 1A/B: L44 (2003). https://doi.org/10.1143/JJAP.43.L44 Crossref
  2. A. Pogorelov, A. Filatov, and Ye. Pogoryelov, phys. status solidi (b), 251, Iss. 1: 172 (2014). Crossref
  3. O. E. Pohorelov, O. V. Filatov, E. O. Pohoryelov, and K. M. Khranovs'ka, Sposib Stvorennya Komirky Mahnitnoyi Pam'yati [The Method of Creating a Magnetic Memory Cell], Ukrainian Patent No. 105875 (Published June 25, 2014) (in Ukrainian).
  4. Mayank Chakraverty and Harish M. Kittur, International J. Micro and Nano Systems, 2(1): 1 (2011).
  5. Jun Jiang, X.-G. Zhang and X. F. Han, EPL, 114, No. 1: 17005 (2016). Crossref
  6. T. A. Khachaturova, M. A. Beloholovskyy, and A. Y. Khachaturov, Metallofiz. Noveishie Tekhnol., 30, No. 7: 899 (2008).
  7. S. S. Parkin, Nature Materials, 3: 862 (2004). Crossref
  8. H. A. Bakay, M. P. Bratushchak, and A. S. Kuzema, J. Nano- Electronic Physics, 1, No. 4: 110 (2009). Crossref
  9. P. P. Kuz'menko, Elektroperenos, Termoperenos i Diffuziya v Metallakh [Electric Transport, Thermal Transfer and Diffusion in Metals] (Kyiv: Vyshcha Shkola: 1983) (in Russian).
  10. K. N. Tukmakov and A. V. Arhipov, Vestnik Samarskogo Gosudarstvennogo Aerokosmicheskogo Universiteta im. Akademika S. P. Korolyova, No. 1: 185 (2010) (in Russian).