Quantification of Electron Work Function Effects on Acoustic Parameters of Metals

Amel Gacem$^{1}$, Zakaria Hadef$^{1}$, Kenza Kamli$^{1}$, Beddiaf Zaidi$^{2}$

$^{1}$University of 20 August 1955, 26 Road El Hadaiek, 21000 Skikda, Algeria
$^{2}$University of Batna 1, Allées 19 Mai, Route de Biskra, 05000 Batna, Algeria

Received: 18.03.2019. Download: PDF

In this study, efforts are made to establish the correlation between electron work function (EWF) and acoustical properties of metals such as Rayleigh velocity and acoustic impedance. As shown, the generalized Rayleigh velocity increases linearly with increasing EWF. This observed behaviour, which is due to the electronic structures, is also extended and computed for acoustic impedance; exponential dependences are deduced. These dependences are quantified by semi-empirical equations. The obtained results help to better estimate the interdependence between electronic properties of metals and their acoustic parameters.

Key words: metals, electron work function, acoustic parameters.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i07/0939.html

DOI: https://doi.org/10.15407/mfint.42.07.0939

PACS: 43.25.+y, 68.60.Bs, 71.20.-b, 73.30.+y

Citation: Amel Gacem, Zakaria Hadef, Kenza Kamli, and Beddiaf Zaidi, Quantification of Electron Work Function Effects on Acoustic Parameters of Metals, Metallofiz. Noveishie Tekhnol., 42, No. 7: 939—948 (2020)


REFERENCES
  1. Z. Hadef, A. Doghmane, and K. Kamli, Metallofiz. Noveishie Tekhnol., 40, No. 7: 955 (2018). Crossref
  2. Z. Hadef, Etude de l'Adhésion dans les Systèmes Métaux Liquides/Céramiques: Micro-Caractérisation Acoustique (Editions Universitaires Européennes), 978-3-639-50266-4 (2018).
  3. J. G. Li, Mater. Lett., 22, Nos. 3-4: 169 (1995). Crossref
  4. G. Hua and D. Y. Li, Appl. Phys. Lett., 99: 041907 (2011). Crossref
  5. G. M. Hua and D. Y. Li, phys. status solidi (b), 1-4 (2012). Crossref
  6. J. Chrzanowski and B. Bieg, Appl. Surf. Sci., 461: 83 (2018). Crossref
  7. Y. Jiang, J. Li, G. Su, N. Ferri, W. Liu, and A. Tkatchenko, J. Phys. Condens. Matter, 29, 204001 (2017). Crossref
  8. D. P. Ji, Q. Zhu, and S. Q. Wang, Surf. Sci., 651: 137 (2016). Crossref
  9. V. Trepalin, I. Asselberghs, S. Brems, C. Huyghebaert, I. Radu, V. Afanas'ev, M. Houssa, and A. Stesmans, Thin Solid Films, 674: 39 (2019). Crossref
  10. H. Lu, G. Hua, and D. Li, Appl. Phys. Lett., 103: 261902 (2013). Crossref
  11. L. Touati-Tliba, Z. Hadjoub, I. Touati, and A. Doghmane, Chin. J. Phys., 55: 2614 (2017). Crossref
  12. Z. Hadef, A. Doghmane, K. Kamli, and Z. Hadjoub, Prog. Phys. Met., 19, No. 2: 168 (2018). Crossref
  13. J. Kushibiki and N. Chubachi, IEEE Trans. Sonics and Ultrasonics, SU32: 189 (1985). Crossref
  14. R. G. Maev, Acoustic Microscopy: Fundamentals and Applications (Berlin: Wiley-VCH: 2008).
  15. M. Doghmane, F. Hadjoub, A. Doghmane, and Z. Hadjoub, Mater. Lett., 61, No. 3: 813 (2007). Crossref
  16. C. G. R. Sheppard and T. Wilson, Appl. Phys. Lett., 38, No. 11: 884 (1981). Crossref
  17. P. V. Zinin, Handbook of Elastic Properties of Solids, Liquids and Gases, (Eds. M. Levy, H. Bass, R. Stern and V. Keppens) (New York: Academic Press: 2001).
  18. A. Briggs, Advances in Acoustic Microscopy (New York: Plenum Press: (1995), vol. 1. Crossref
  19. H. B. Michaelson, J. Appl. Phys., 48: 4729 (1977). Crossref
  20. ASM Handbook, Pure Metals (Ohio: ASM International: 1990), vol. 2, ch. 4.
  21. G. A. D. Briggs and O. V. Kolosov, Acoustic Microscopy (Oxford: Oxford Univ. Press: 2010). Crossref