Angular Dependence of Linear Microwave Response of Thin Superconducting Films of Yttrium–Barium Cuprate in Mixed State

A. A. Kalenyuk$^{1}$, S. I. Futimsky$^{1}$, V. S. Flis$^{1}$, V. O. Moskaliuk$^{1}$, V. V. Shamaev$^{2}$, A. P. Shapovalov$^{1,3}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Donetsk National Technical University, 2 Shybankov Sqr., UA-85300 Pokrovs’k, Ukraine
$^{3}$V. M. Bakul Institute for Superhard Materials, NAS of Ukraine, 2 Avtozavodska Str., UA-04074 Kyiv, Ukraine

Received: 02.07.2020. Download: PDF

The linear microwave response of thin YBa$_2$Cu$_3$O$_{7-\delta}$ (YBCO) films in a mixed state was obtained at different angles of magnetic field rotation relative to the film surface. From the experimental dependences of the quality factor $Q$($\alpha$) and the resonance frequency $F$($\alpha$) of the YBCO microstrip resonator on the field rotation angle $\alpha$, the angular dependences of the Labusch parameter $k_p$($\alpha$) and the viscosity coefficient $\eta$($\alpha$) of the vortex flow motion are obtained. The obtained anisotropy coefficients $\gamma$=(2–9) confirm the high quality of the used samples. The approximations of the experimental data using the models of 2D and 3D anisotropy of the Labusch parameter $k_p$($\alpha$) and the viscosity coefficient $\eta$($\alpha$) showed the dominance of two-dimensional pinning in these films.

Key words: microwave, high-temperature superconductivity, microstrip resonator, quality factor, surface resistance, Labusch parameter, viscosity coefficient.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i08/1043.html

DOI: https://doi.org/10.15407/mfint.42.08.1043

PACS: 74.25.-q, 74.25.Ha, 74.72.-h, 74.78.-w, 84.40.-x

Citation: A. A. Kalenyuk, S. I. Futimsky, V. S. Flis, V. O. Moskaliuk, V. V. Shamaev, and A. P. Shapovalov, Angular Dependence of Linear Microwave Response of Thin Superconducting Films of Yttrium–Barium Cuprate in Mixed State, Metallofiz. Noveishie Tekhnol., 42, No. 8: 1043—1054 (2020) (in Ukrainian)


REFERENCES
  1. C. Proust and L. Taillefer, Ann. Rev. Condens. Matter Phys., 10: 409 (2019). Crossref
  2. Yu. M. Boguslavsky and A. P. Shapovalov, Supercond. Sci. Technol., 4, No. 4: 149 (1991). Crossref
  3. V. L. Svetchnikov, V. S. Flis, A. A. Kalenyuk, A. L. Kasatkin, A. I. Rebikov, V. O. Moskaliuk, C. G. Tretiatchenko, and V. M. Pan, J. Phys.: Conf. Ser., 234, No. 1: 012041 (2010). Crossref
  4. V. S. Flis, A. A. Kalenyuk, A. L. Kasatkin, V. O. Moskalyuk, A. I. Rebikov, V. L. Svechnikov, K. G. Tret'yachenko, and V. M. Pan, Low Temp. Phys., 36, No. 1: 59 (2010). Crossref
  5. V. M. Pan, A. A. Kalenyuk, A. L. Kasatkin, O. M. Ivanyuta, and G. A. Melkov, J. Supercond. Novel Magn., 20, No. 1: 59 (2007). Crossref
  6. V. M. Pan, O. A. Kalenyuk, O. L. Kasatkin, V. A. Komashko, O. M. Ivanyuta and G. A. Melkov, Low Temp. Phys., 32, No. 4: 497 (2006). Crossref
  7. V. M. Pan, V. F. Tarasov, V. S. Flis, V. O. Moskalyuk, S .I. Futymskiy, Metallofiz. Noveishie Tekhnol., 32, No. 7: 877 (2010) (in Russian).
  8. V. M. Pan, V. F. Tarasov, and S. I. Futimsky, Surface Impedance of Superconductors, 51, No. 10: 544 (2008) (in Russian). Crossref
  9. A. A. Kalenyuk, Low Temp. Phys., 35, No. 2: 105 (2009). Crossref
  10. O. A. Kalenyuk, K. A. Greben, O. V. Vakalyuk, V. O. Moskalyuk, V. S. Flis, and V. M. Pan, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1141 (2010) (in Russian).
  11. N. Pompeo, R. Rogai, K. Torokhtii, A. Augieri, G. Celentano, V. Galluzzi, and E. Silva, Physica C: Superconductivity, 479: 160 (2012). Crossref
  12. E. Silva, M. Lanucara, and R. Marcon, Supercond. Sci. Technol., 9, No. 11: 934 (1996). Crossref
  13. M. Golosovsky, M. Tsindlekht, and D. Davidov, Supercond. Sci. Technol., 9, No. 1: 1 (1996). Crossref
  14. J. I. Gittleman and B. Rosenblum, Phys. Rev. Lett., 16, No. 17: 734 (1966). Crossref
  15. A. A. Kalenyuk, A. I. Rebikov, A. L. Kasatkin, and V. M. Pan, Proc. of '2010 Int. Kharkov Symp. on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves-MSMW 2010' (June 21-26, 2010) (Kharkiv: 2010). Crossref
  16. A. A. Kalenyuk, S. I. Futimsky, A. L. Kasatkin, A. I. Gubin, and S. A. Vitusevich, Proc. of '2013 Int. Kharkov Symp. on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves' (June 23-28, 2013) (Kharkiv: 2013), p. 667. Crossref
  17. Yu. V. Fedotov, S. M. Ryabchenko, Y. A. Pashitskii, A. V. Semenov, V. I. Vakaryuk, V. M. Pan, and V. S. Flis, Low Temp. Phys., 28, No. 3: 172 (2002). Crossref
  18. O. Prokopenko, O. Vakaliuk, K. Greben, A. Kalenyuk, and V. Pan, Proc. of '2010 Int. Kharkov Symp. on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves-MSMW 2010' (June 21-26, 2010) (Kharkiv: 2010). Crossref
  19. M. J. Lancaster, Passive Microwave Device Applications of High-Temperature Superconductors (New York: Cambridge University Press: 1997). Crossref
  20. V. M. Pan, D. A. Luzhbin, A. A. Kalenyuk, A. L. Kasatkin, V. A. Komashko, A. V. Velichko, and M. Lancaster, Low Temp. Phys., 31, Nos. 3-4: 254 (2005). Crossref
  21. G. Blatter, V. B. Geshkenbein, and A. I. Larkin, Phys Rev. Lett., 68, No. 6: 875 (1992). Crossref
  22. Z. Hao and J. R. Clem, Phys. Rev. B, 46, No. 9: 5853 (1992). Crossref
  23. R. A. Klemm, Phys. Rev. B, 47, No. 21: 14630 (1993). Crossref
  24. A. A. Kalenyuk, A. Pagliero, E. A. Borodianskyi, S. Aswartham, S. Wurmehl, B. Büchner, D. A. Chareev, A. A. Kordyuk, and V. M. Krasnov, Phys. Rev. B, 96, No. 13: 134512 (2017). Crossref
  25. M. Golosovsky, M. Tsindlekht, H. Chayet, D. Davidov, N. Bontemps, S. Chocron, E. Iskevitch, B. Brodskii, and J. P. Contour, Physica C, 235-240, No. 5: 3147 (1994). Crossref
  26. V. Shaternik, M. Belogolovskii, T. Prikhna, A. Shapovalov, O. Prokopenko, D. Jabko, O. Kudrja, O. Suvorov, and V. Noskov, Physics Procedia, 36: 94 (2012). Crossref
  27. V. E. Shaternik, A. P. Shapovalov, A. V. Suvorov, N. A. Skoryk, and M. A. Belogolovskii, Low. Temp. Phys., 42, No. 5: 426 (2016). Crossref