Loading [MathJax]/jax/output/HTML-CSS/jax.js

Graphite Nanoplatelets Modified with Bimetallic Ni–Fe Particles for Catalysis Purposes

A. G. Dyachenko1, O. V. Ishchenko1, L. Yu. Matzui1, V. E. Diyuk1, A. V. Vakalyuk1, A. V. Yatsymyrskyi1, O. A. Syvolozhskyi1, O. S. Yakovenko1, O. V. Mischanchuk2

1Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine
2O. O. Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., UA-03164 Kyiv, Ukraine

Received: 05.12.2019. Download: PDF

The structure and surface morphology of graphite nanoplatelets (GNPs) modified by bimetallic Ni–Fe phase with 80% mass. Ni and 20% mass. Fe is investigated by the methods of scanning electron microscopy and X-ray analysis. The bimetallic active phase is applied onto GNPs surface with impregnation method using nitrate solutions of metals. The prepared Ni80Fe20/GNPs composite demonstrated high catalytic performance in the reaction of CO2 methanation. At the temperature range of 350–450°C, it exhibited a high efficiency of CO2 conversion compared to bulk Ni80Fe20. The thermoprogrammed desorption study of the surface condition of the Ni80Fe20/GNPs composite after exposition in the catalytic process showed that H2O (m/z=18), CO (m/z=28) and CO2 (m/z=44) particles are desorbed from the surface.

Key words: graphite nanoplatelets, CO2 methanation, bimetallic particles, supported catalysts.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i08/1055.html

DOI: https://doi.org/10.15407/mfint.42.08.1055

PACS: 82.20.-w, 82.30.-b, 82.30.Hk, 82.45.Jn, 82.65.+r

Citation: A. G. Dyachenko, O. V. Ishchenko, L. Yu. Matzui, V. E. Diyuk, A. V. Vakalyuk, A. V. Yatsymyrskyi, O. A. Syvolozhskyi, O. S. Yakovenko, and O. V. Mischanchuk, Graphite Nanoplatelets Modified with Bimetallic Ni–Fe Particles for Catalysis Purposes, Metallofiz. Noveishie Tekhnol., 42, No. 8: 1055—1063 (2020)


REFERENCES
  1. E. T. Thostenson, C. Li, and T.-W. Chou, Compos. Sci. Technol., 65: 491 (2005). Crossref
  2. M. Alberts, K. Kalaitzidou, and S. Melkote, Int. J. Mach. Tool Manuf., 49: 966 (2009). Crossref
  3. I. Sulym, A. Kubiak, K. Jankowska, D. Sternik, K. Terpilowski, Yu. Sementsov, M. Borysenko, A. Derylo-Marczewska, and T. Jesionowski, Physicochem. Probl. Miner. Process., 55: 1394 (2019). Crossref
  4. A. K. Geim and K. S. Novoselov, Nat. Mater., 6: 183 (2007). Crossref
  5. A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, and R. C. Haddon, J. Phys. Chem. C, 111: 7565 (2007). Crossref
  6. E. V. Ishchenko, S. V. Gaidai, A. A. Byeda, T. M. Zakharova, A. G. Dyachenko, and E. V. Prilutskiy, J. Superhard Mater., 39: 336 (2017). Crossref
  7. Raquel P. Rocha, Olívia S.G.P. Soares, José L. Figueiredo, and Manuel Fernando R. Pereira, J. Carbon Res., 2: 17 (2016). Crossref
  8. V. K. Yatsimirsky, V. L. Budarin, V. Y. Diyuk, L. Y. Matzui, and M. I. Zacharenko, Ads. Sci. Tech., 18: 609 (2000). Crossref
  9. V. L. Budarin, V. Diyuk, L. Matzui, L. Vovchenko, T. Tsvetkova, and M. Zakharenko, J. Therm. Anal. Calorim., 62: 345 (2000). Crossref
  10. V. A. Zazhigalov, E. A. Diyuk, and V. V. Sidorchuk, Kinetics and Catalysis, 55: 399 (2014). Crossref
  11. V. K. Yatsymyrs'kyi, G. G. Tsapyuk, O. V. Ishchenko, V. Ye. Diyuk, T. V. Kartashova, and L. M. Grishchenko, J. Superhard Mater., 32: 263 (2010). Crossref
  12. R. Meshkini-Far, A. Dyachenko, S. Gaidai, O. Bieda, M. Filonenko, and O. Ishchenko, Acta Phys. Pol. A, 133: 1088 (2018). Crossref
  13. R. Meshkini Far, O. V. Ischenko, A.G. Dyachenko, O. Bieda, S. V. Gaidai, and V. V. Lisnyak, Func. Mat. Lett., 11: 1850057 (2018). Crossref
  14. P. A. Ussa Aldana, F. Ocampo, K. Kobl, B. Louis, F. Thibault-Starzyk, M. Daturi, P. Bazin, S. Thomas, and A. C. Roger, Catal. Today, 215: 201 (2013). Crossref
  15. O. Linnik, N. Chorna, and N. Smirnova, Nanoscale Res. Lett., 12: 249 (2017). Crossref
  16. N. Chorna, N. Smirnova, V. Vorobets, G. Kolbasov, and O. Linnik, Appl. Surf. Sci., 473: 343 (2019). Crossref
  17. Patrizia Frontera, Anastasia Macario, Marco Ferraro, and PierLuigi Antonucci, Catalysts, 7: 59 (2017). Crossref
  18. Wei Wang, Wei Chu, Ning Wang, Wen Yang, and Chengfa Jiang, Int. J. Hydrogen Energy, 41: 967 (2016). Crossref
  19. V. L. Budarin, V. E. Diyuk, N. V. Zakharenko, B. A. Eichis, and V. K. Yatsimirskii, Theor. Exp. Chem., 34: 283 (1998). Crossref
  20. M. W. Roberts and C. S. McKee, Chemistry of the Metal-Gas Interface (UK: Clarendon Press: 1978).
  21. Bin Miao, Su Su Khine Ma, Xin Wang, Haibin Su, and Siew Hwa Chan, Catal. Sci. Technol., 6: 4048 (2016). Crossref