Graphite Nanoplatelets Modified with Bimetallic Ni–Fe Particles for Catalysis Purposes

A. G. Dyachenko$^{1}$, O. V. Ishchenko$^{1}$, L. Yu. Matzui$^{1}$, V. E. Diyuk$^{1}$, A. V. Vakalyuk$^{1}$, A. V. Yatsymyrskyi$^{1}$, O. A. Syvolozhskyi$^{1}$, O. S. Yakovenko$^{1}$, O. V. Mischanchuk$^{2}$

$^{1}$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine
$^{2}$O. O. Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., UA-03164 Kyiv, Ukraine

Received: 05.12.2019. Download: PDF

The structure and surface morphology of graphite nanoplatelets (GNPs) modified by bimetallic Ni–Fe phase with 80% mass. Ni and 20% mass. Fe is investigated by the methods of scanning electron microscopy and X-ray analysis. The bimetallic active phase is applied onto GNPs surface with impregnation method using nitrate solutions of metals. The prepared Ni$_{80}$Fe$_{20}$/GNPs composite demonstrated high catalytic performance in the reaction of CO$_2$ methanation. At the temperature range of 350–450°C, it exhibited a high efficiency of CO$_2$ conversion compared to bulk Ni$_{80}$Fe$_{20}$. The thermoprogrammed desorption study of the surface condition of the Ni$_{80}$Fe$_{20}$/GNPs composite after exposition in the catalytic process showed that H$_2$O ($m/z$=18), CO ($m/z$=28) and CO$_2$ ($m/z$=44) particles are desorbed from the surface.

Key words: graphite nanoplatelets, CO$_2$ methanation, bimetallic particles, supported catalysts.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i08/1055.html

DOI: https://doi.org/10.15407/mfint.42.08.1055

PACS: 82.20.-w, 82.30.-b, 82.30.Hk, 82.45.Jn, 82.65.+r

Citation: A. G. Dyachenko, O. V. Ishchenko, L. Yu. Matzui, V. E. Diyuk, A. V. Vakalyuk, A. V. Yatsymyrskyi, O. A. Syvolozhskyi, O. S. Yakovenko, and O. V. Mischanchuk, Graphite Nanoplatelets Modified with Bimetallic Ni–Fe Particles for Catalysis Purposes, Metallofiz. Noveishie Tekhnol., 42, No. 8: 1055—1063 (2020)


REFERENCES
  1. E. T. Thostenson, C. Li, and T.-W. Chou, Compos. Sci. Technol., 65: 491 (2005). Crossref
  2. M. Alberts, K. Kalaitzidou, and S. Melkote, Int. J. Mach. Tool Manuf., 49: 966 (2009). Crossref
  3. I. Sulym, A. Kubiak, K. Jankowska, D. Sternik, K. Terpilowski, Yu. Sementsov, M. Borysenko, A. Derylo-Marczewska, and T. Jesionowski, Physicochem. Probl. Miner. Process., 55: 1394 (2019). Crossref
  4. A. K. Geim and K. S. Novoselov, Nat. Mater., 6: 183 (2007). Crossref
  5. A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, and R. C. Haddon, J. Phys. Chem. C, 111: 7565 (2007). Crossref
  6. E. V. Ishchenko, S. V. Gaidai, A. A. Byeda, T. M. Zakharova, A. G. Dyachenko, and E. V. Prilutskiy, J. Superhard Mater., 39: 336 (2017). Crossref
  7. Raquel P. Rocha, Olívia S.G.P. Soares, José L. Figueiredo, and Manuel Fernando R. Pereira, J. Carbon Res., 2: 17 (2016). Crossref
  8. V. K. Yatsimirsky, V. L. Budarin, V. Y. Diyuk, L. Y. Matzui, and M. I. Zacharenko, Ads. Sci. Tech., 18: 609 (2000). Crossref
  9. V. L. Budarin, V. Diyuk, L. Matzui, L. Vovchenko, T. Tsvetkova, and M. Zakharenko, J. Therm. Anal. Calorim., 62: 345 (2000). Crossref
  10. V. A. Zazhigalov, E. A. Diyuk, and V. V. Sidorchuk, Kinetics and Catalysis, 55: 399 (2014). Crossref
  11. V. K. Yatsymyrs'kyi, G. G. Tsapyuk, O. V. Ishchenko, V. Ye. Diyuk, T. V. Kartashova, and L. M. Grishchenko, J. Superhard Mater., 32: 263 (2010). Crossref
  12. R. Meshkini-Far, A. Dyachenko, S. Gaidai, O. Bieda, M. Filonenko, and O. Ishchenko, Acta Phys. Pol. A, 133: 1088 (2018). Crossref
  13. R. Meshkini Far, O. V. Ischenko, A.G. Dyachenko, O. Bieda, S. V. Gaidai, and V. V. Lisnyak, Func. Mat. Lett., 11: 1850057 (2018). Crossref
  14. P. A. Ussa Aldana, F. Ocampo, K. Kobl, B. Louis, F. Thibault-Starzyk, M. Daturi, P. Bazin, S. Thomas, and A. C. Roger, Catal. Today, 215: 201 (2013). Crossref
  15. O. Linnik, N. Chorna, and N. Smirnova, Nanoscale Res. Lett., 12: 249 (2017). Crossref
  16. N. Chorna, N. Smirnova, V. Vorobets, G. Kolbasov, and O. Linnik, Appl. Surf. Sci., 473: 343 (2019). Crossref
  17. Patrizia Frontera, Anastasia Macario, Marco Ferraro, and PierLuigi Antonucci, Catalysts, 7: 59 (2017). Crossref
  18. Wei Wang, Wei Chu, Ning Wang, Wen Yang, and Chengfa Jiang, Int. J. Hydrogen Energy, 41: 967 (2016). Crossref
  19. V. L. Budarin, V. E. Diyuk, N. V. Zakharenko, B. A. Eichis, and V. K. Yatsimirskii, Theor. Exp. Chem., 34: 283 (1998). Crossref
  20. M. W. Roberts and C. S. McKee, Chemistry of the Metal-Gas Interface (UK: Clarendon Press: 1978).
  21. Bin Miao, Su Su Khine Ma, Xin Wang, Haibin Su, and Siew Hwa Chan, Catal. Sci. Technol., 6: 4048 (2016). Crossref