Corrosion-Electrochemical Properties of Quasicrystalline Al–Cu–Co and Al–Ni–Cо in NaCl Solution

O. V. Sukhova, V. A. Polonsky

Oles Honchar Dnipro National University, 72 Gagarin Ave., UA-49010 Dnipro, Ukraine

Received: 10.03.2020; final version - 04.08.2020. Download: PDF

The structure and electrochemical properties of quasicrystalline cast Al$_{65}$Co$_{20}$Cu$_{15}$ and Al$_{72}$Co$_{18}$Ni$_{10}$ alloys cooled at 50 K/s are studied in this work. The methods of quantitative metallography, scanning electron microscopy, X-ray analysis and energy dispersive X-ray spectrometry are applied. Corrosion behaviour in 5% aqueous NaCl solution (pH = 6.9–7.1) is investigated by gravimetric and potentiodynamic methods. Not less than 60–65% vol. of quasicrystalline decagonal phase is observed in the structure of the alloys. The corrosion of the alloys in the aqueous solution of sodium chloride proceeds under electrochemical mechanism. Both alloys have close values of stationary potentials (-0.43 V for the Al$_{65}$Co$_{20}$Cu$_{15}$ alloy and -0.40 V for the Al$_{72}$Co$_{18}$Ni$_{10}$ alloy). Current density for the Al$_{63}$Co$_{24}$Cu$_{13}$ alloy equals to 0.18 mA/cm$^2$, and that for the Al$_{69}$Co$_{21}$Ni$_{10}$ alloy—0.12 mA/cm$^2$. Gravimetric measurements show that the mass of the samples is grown during first 4 days of model corrosion tests, but during the following 4 days of experiments the mass remains almost unchanged. The result obtained is explained by the formation of a protective oxide film on the surface of the samples. The corrosion resistance of Al$_{69}$Co$_{21}$Ni$_{10}$ alloy in the saline solution of sodium chloride slightly exceeds the one of Al$_{63}$Co$_{24}$Cu$_{13}$ alloy. Scanning electron microscopy shows the marks of pitting corrosion on the surface of the investigated alloys. The pits with size $\sim$10 $\mu$m appear mostly in the defected areas. The corrosion mainly occurs at the boundaries of the primary and the peritectic phases. Both the quasicrystalline cast Al$_{65}$Co$_{20}$Cu$_{15}$ and Al$_{72}$Co$_{18}$Ni$_{10}$ alloys may be recommended for the application as the fillers of macroheterogeneous composite coatings designated for the performance in the conditions of sea climate.

Key words: quasicrystalline cast alloys, decagonal quasicrystals, sodium chloride solution, electrochemical properties, corrosion resistance.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i09/1283.html

DOI: https://doi.org/10.15407/mfint.42.09.1283

PACS: 61.44.Br, 62.23.Pq, 68.37.Hk, 81.05.Ni, 81.65.Kn, 82.45.Bb

Citation: O. V. Sukhova and V. A. Polonsky, Corrosion-Electrochemical Properties of Quasicrystalline Al–Cu–Co and Al–Ni–Cо in NaCl Solution, Metallofiz. Noveishie Tekhnol., 42, No. 9: 1283—1292 (2020) (in Ukrainian)


REFERENCES
  1. O. V. Sukhova, Metallofiz. Noveishie Technol., 31, No. 7: 1001 (2009) (in Ukrainian).
  2. O. Sukhova and Yu. Syrovatko, Metallofiz. Noveishie Technol., 33, Special Issue: 371 (2011) (in Russian).
  3. I. M. Spyrydonova, O. V. Sukhova, and G. V. Zinkovskij, Metall. Min. Ind., 4, No. 4: 2 (2012).
  4. I. M. Spiridonova, E. V. Sukhovaya, and V. P. Balakin, Metallurgia, 35, No. 2: 65 (1996).
  5. I. M. Spiridonova, E. V. Sukhovaya, V. F. Butenko, A. P. Zhudra, A. I. Litvinenko, and A. I. Belyi, Powder Metallurgy and Metal Ceramics, 32: 139 (1993). Crossref
  6. I. M. Spiridonova, E. V. Sukhovaya, S. B. Pilyaeva, and O. G. Bezrukavaya, Metall. Min. Ind., No. 3: 58 (2002).
  7. O. V. Sukhova and Yu. V. Syrovatko, Metallofiz. Noveishie Technol., 41, No. 9: 1171 (2019) (in Russian). Crossref
  8. E. V. Sukhovaya, J. Superhard Mater., 35, No. 5: 277 (2013). Crossref
  9. A. Rudiger and U. Koster, Mater. Sci. Eng., 294-296: 890 (2000). Crossref
  10. O. V. Sukhova, V. A. Polonskyy, and K. V. Ustinova, Voprosy Khimii i Khimicheskoy Tekhnologii, 121, No. 6: 77 (2018) (in Ukrainian). Crossref
  11. C. Zhou, R. Cai, S. Gong, and H. Xu, Surf. Coat. Technol., 201: 1718 (2006). Crossref
  12. Y. Kang, C. Zhou, S. Gong, and H. Xu, Mater. Sci. Forum, 475-479: 3355 (2005). Crossref
  13. Yi. Lei, M. Calvo-Dahlborg, J. M. Dubois, Z. Hei, P. Weisbecker, and C. Dong, J. Non-Crystalline Solids, 330, Iss. 1-3: 39 (2003). Crossref
  14. S. H. Kim, B. H. Kim, S. M. Lee, W. T. Kim, and D. H. Kim, J. Alloys Compd., 342: 246 (2002). Crossref
  15. A.-P. Tsai, A. Inoue, and T. Masumoto, Mater. Trans., JIM, 30, No. 4: 300 (1989). Crossref
  16. K. Edagawa, H. Tamaru, S. Yamaguchi, K. Suzuki, and S. Takeuchi, Phys. Rev. B, 50: 12413 (1994). Crossref
  17. O. V. Sukhova, V. A. Polonskyy, and K. V. Ustinova, Metallofiz. Noveishie Technol., 40, No. 11: 1475 (2018) (in Ukrainian). Crossref
  18. O. V. Sukhova, V. A. Polonskyy, and K. V. Ustinova, Mater. Sci., 55, No. 2: 285 (2019). Crossref
  19. O. V. Sukhova, V. A. Polonskyy, and K. V. Ustinova, Voprosy Khimii i Khimicheskoy Tekhnologii, 124, No. 3: 46 (2019). Crossref