Simulation of Thermal Stability and Melting of Au@Pd Metallic Nanoparticle

D. S. Zakharova, U. S. Shvets, B. V. Natalich, V. M. Borysiuk

Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine

Received: 01.08.2019; final version - 19.06.2020. Download: PDF

Within the framework of the molecular dynamics methods the simulation of the temperature stability of the metallic Au@Pd nanoparticle with the core–shell structure is performed and the melting temperature of the sample is determined. During the simulation of the dynamic behaviour of nanoparticle the calculation of forces of interatomic interactions is carried out within the embedded atom method. To simulate the melting process, the temperature of the sample is gradually increased by scaling the corresponding atomic velocities using the Berendsen thermostat in the temperature range 300 K–2500 K. The Lindemann index is used as a numerical parameter described changes in the structure of the nanoparticle. According to the results of the study, the temperature dependence of the Lindemann index and the average potential energy are obtained, as well as the radial distribution functions for the Au@Pd nanoparticle at different temperature values. The obtained dependences have a typical form: they first increase monotonically at a temperature range 300 $\leq T \leq$ 1500 K, and, when the temperature reaches about 1600 K, the Lindemann index and potential energy begin to increase rapidly, which may be considered as the beginning of the melting process. From the simulation results, atomistic configurations of the sample are built and the dynamics of changes in their structure is investigated. Spatial distribution of the atoms on Lindemann index within the volume of the sample around melting temperature is also calculated. As it is follows from the obtained data, the melting of Au@Pd nanoparticle with spherical shape begins on the surface of the sample, as well as in a core which consists of Au atoms. Calculated data allowed us to determine the temperature where destruction of the crystalline structure of the sample occurs.

Key words: molecular dynamics, melting, Lindemann index, metallic nanoparticles, core–shell.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i09/1303.html

DOI: https://doi.org/10.15407/mfint.42.09.1303

PACS: 02.70.Ns, 61.46.Df, 62.23.St, 64.70.dj, 65.80.-g

Citation: D. S. Zakharova, U. S. Shvets, B. V. Natalich, and V. M. Borysiuk, Simulation of Thermal Stability and Melting of Au@Pd Metallic Nanoparticle, Metallofiz. Noveishie Tekhnol., 42, No. 9: 1303—1313 (2020) (in Ukrainian)


REFERENCES
  1. R. Gh. Chaudhuri and S. Paria, Chem. Rev., 112, No. 4: 2373 (2012). Crossref
  2. S. Alayoglu, F. Tao, V. Altoe, C. Specht, Zh. Zhu, F. Aksoy, D. R. Butcher, R. J. Renzas, Zhi Liu, and G. A. Somorjai, Catal. Lett., 141, No. 5: 633 (2011). Crossref
  3. W.-Y. Yu, G. M. Mullen, D. W. Flaherty, and C. B. Mullins, J. Am. Chem. Soc., 136, No. 31: 11070 (2014). Crossref
  4. S. J. Mejía-Rosales, C. Fernández-Navarro, E. Pérez-Tijerina, J. M. Montejano-Carrizales, and M. José-Yacamán, Phys. Chem. B, 110, No. 26: 12884 (2006). Crossref
  5. M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, and M. Nishio, Crystal Growth & Design, 6, No. 8: 1801 (2006). Crossref
  6. S.-W. Baek, G. Park, J. Noh, Ch. Cho, Ch.-Ho Lee, M.-K. Seo, H. Song, and J.-Y. Lee, ACS Nano, 8, No. 4: 3302 (2014). Crossref
  7. J. Xu, A. R. Wilson, A. R. Rathmell, J. Howe, M. Chi, and B. J. Wiley, ACS Nano, 5, No. 8: 6119 (2011). Crossref
  8. D. Chen, Ch. Li, H. Liu, F. Ye, and J. Yang, Sci. Rep., 5: 11949 (2015). Crossref
  9. H. A. Alarifi, M. Atiş, C. Ozdoğan, A. Hu, M. Yavuz, and Y. Zhou, J. Phys. Chem. C, 117, No. 23: 12289 (2013). Crossref
  10. Zh. Yang, X. Yang, and Zh. Xu, J. Phys. Chem. C, 112, No. 13: 4937 (2008). Crossref
  11. H. H. Kart, H. Yildirim, S. O. Kart, and T. Çagin, Mat. Chem. Phys., 147, Nos. 1-2: 204 (2014). Crossref
  12. Sh. Lu, J. Zhang, and H. Duan, Chem. Phys., 363, Nos. 1-3: 7 (2009). Crossref
  13. R. Essajai and N. Hassanain, J. Mol. Liq., 261: 402 (2018). Crossref
  14. A. Stukowski, Modelling Simul. Mater. Sci. Eng., 18, No. 1: 015012 (2010). Crossref
  15. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys., 81, No. 8: 3684 (1984). Crossref
  16. M. I. Baskes, Phys. Rev. B, 46, No. 5: 2727 (1992). Crossref
  17. S. Plimpton, J. Comput. Phys., 117, No. 1: 1 (1995). Crossref
  18. K. Zhang, G. M. Stocks, and J. Zhong, Nanotechnology, 18, No. 28: 285703 (2007). Crossref
  19. C. R. Hammond, The 81th Edition of the CRC Handbook of Chemistry and Physics (Boca Raton: CRC Press: 2000).
  20. D. C. Rapaport, The Art of Molecular Dynamics Simulation (NY: Cambridge University Press: 2004). Crossref