Flux-Driven Lateral Grain Growth during Reactive Diffusion

A. M. Gusak

Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., UA-18031 Cherkasy, Ukraine

Received: 06.03.2020. Download: PDF

Lateral grain growth accompanies intermetallic compound growth. Moreover, it can be induced by reactive phase transformation at low temperatures (at frozen bulk diffusion). In its turn, the evolution of grain size (at low temperature) influences the rate of diffusive reaction. This synergy of the Reaction-Driven Grain Growth and Diffusion-Controlled Reaction is analysed. Power laws for the intermetallic compound growth with time exponent 0.4 and the lateral grain growth with time exponent 0.2 are predicted.

Key words: reactive diffusion, grain growth, kinetics, power law.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i10/1335.html

DOI: https://doi.org/10.15407/mfint.42.10.1335

PACS: 64.60.De, 64.60.Ej, 66.30.Ny, 66.30.Pa, 68.35.bd, 81.30.Hd

Citation: A. M. Gusak, Flux-Driven Lateral Grain Growth during Reactive Diffusion, Metallofiz. Noveishie Tekhnol., 42, No. 10: 1335—1346 (2020)


REFERENCES
  1. J. M. Poate, K. N. Tu, and J. W. Mayer, Thin Films: Interdiffusion and Reactions (New York: John Wiley and Sons: 1978).
  2. K. P. Gurov, B. A. Kartashkin, and Y. E. Ugaste, Interdiffusion in Multiphase Metallic Systems (Moscow: Nauka: 1981) (in Russian).
  3. F. J. J. van Loo, Prog. Solid State Chem., 20(1): 47 (1990). Crossref
  4. A. M. Gusak, T. V. Zaporozhets, Y. O. Lyashenko, S. V. Kornienko, M. O. Pasichnyy, and A. S. Shirinyan, Diffusion-Controlled Solid State Reactions: in Alloys, Thin-Films, and Nanosystems (New York: John Wiley and Sons: 2010). Crossref
  5. C. Wagner, Acta Metall., 17, Iss. 2: 99 (1969). Crossref
  6. A. M. Gusak and N. Storozhuk, Metallofiz. Noveishie Tekhnol, 41, No. 5: 583 (2019). Crossref
  7. N. Odashima, O. Minho, and M. Kajihara, J. Electronic Mater., 49: 1568 (2019). Crossref
  8. T. Yamada, K. Miura, M. Kajihara, N. Kurokawa, and K. Sakamoto, Mater. Sci. Eng. A, 390, Iss. 1-2: 118 (2005). Crossref
  9. M. Mita, K. Miura, T. Takenaka, M. Kajihara, N. Kurokawa, and K. Sakamoto, Mater. Sci. Eng.: B, 126, Iss. 1: 37 (2006). Crossref
  10. G. Ghosh, Acta Mater., 48, Iss. 14: 3719 (2000). Crossref
  11. U. Gösele and K. N. Tu, J. Appl. Phys., 53: 3252 (1982). Crossref
  12. A. M. Gusak and K. P. Gurov, Proc. of an International Conference PTM'94 'Solid-to-Solid Phase Transformations' (1994).
  13. A. M. Gusak and K. N. Tu, Phys. Rev. B, 66, Iss. 11: 115403 (2002). Crossref
  14. K. N. Tu, A. M. Gusak, and I. Sobchenko, Phys. Rev. B, 67, Iss. 24: 245408 (2003). Crossref
  15. A. M. Gusak, F. Hodaj, and G. Schmitz, Philos. Mag. Lett., 91, Iss. 9: 610 (2011). Crossref
  16. A. M. Gusak, C. Chen, and K. N. Tu, Philos. Mag., 96, Iss. 13: 1318 (2016). Crossref
  17. A. Gusak, R. Abdank-Kozubski, and D. Tyshchenko, Diffusion Foundations, 5: 229 (2015). Crossref
  18. A. Gusak and N. Storozhuk, Handbook of Solid State Diffusion (Eds. A. Paul and S. Divinski) (Elsevier: 2017) vol. 2, p. 37. Crossref
  19. B. R. Patterson and Y. Liu, Metall. Trans. A, 23, Iss. 9: 2481 (1992). Crossref
  20. A. M. Gusak and M. V. Yarmolenko, J. Appl. Phys., 73, Iss. 10: 4881 (1993). Crossref
  21. M. J. H. van Dal, A. M. Gusak, C. Cserháti, A. A. Kodentsov, and F. J. J. van Loo, Phys. Rev. Lett., 86, Iss. 15: 3352 (2001). Crossref
  22. P. J. Shang, Z. Q. Liu, X. Y. Pang, D. X. Li, and J. K. Shang, Acta Mater., 57, Iss. 16: 4697 (2009). Crossref
  23. K. R. Coffey, L. A. Clevenger, K. Barmak, D. A. Rudman, and C. Thompson, Appl. Phys. Lett., 55, Iss. 9: 852 (1989). Crossref
  24. A. M. Gusak, F. Hodaj, and A. O. Bogatyrev, J. Phys.: Condensed Matter., 13, Iss. 12: 2767 (2001). Crossref