Structural State and Phase Transformations in Fe–В System Alloys

N. Yu. Filonenko$^{1,2}$, А. I. Babachenko$^{1}$, G. A. Kononenko$^{1}$

$^{1}$Z. I. Nekrasov Iron and Steel Institute, NAS of Ukraine, 1 Academician Starodubov Sqr., 49050 Dnipro, Ukraine
$^{2}$State Institution ‘Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine’, 9 Volodymyr Vernadsky Str., UA-49044 Dnipro, Ukraine

Received: 23.04.2019; final version - 14.09.2020. Download: PDF

Investigation is performed for alloys with boron content of 9.0–15.0% wt., the rest is iron. To determine the structural state of alloys, we use the microstructure analysis, as well as the differential thermal and the X-ray diffraction analyses. In the paper we determine the mechanism of Fe$_5$B$_3$ boride formation and show that formation of this phase occurs in Fe–B alloys with boron content of 9.0–15.0% wt. as a result of peritectic transformation L + FeB $\rightarrow$ Fe$_5$B$_3$. As found, an annealing of Fe–B system alloys with boron content of 10.5% wt. at a temperature of 1473 K for four hours and a cooling with a rate of 10$^2$ K/s lead to decrease in the containing of FeВ monoboride and Fe$_2$В boride. There is an increase in the volume fraction of Fe$_5$B$_3$ boride by the transformation in a solid state FeB + Fe$_2$В $\rightarrow$ Fe$_5$B$_3$. As shown, the Fe$_5$B$_3$ phase forms at the temperature of 1650 K, and at 1410 K it loses the thermodynamic stability with formation of FeВ monoboride and Fe$_2$В boride. The accounting for two first order of smallness of the high-temperature expansion for thermodynamic potential of Fe$_5$B$_3$ boride in a binary alloy of the Fe–B system enables to derive temperature dependence of thermodynamic stability of this phase. For the first time it is demonstrated that decrease of Fe$_5$B$_3$ phase stability at 1423 K shows that there its decomposition is started with formation of other phases.

Key words: Fe–B system, Fe$_5$B$_3$ boride, Fe$_2$В boride, FeB monoboride, thermodynamic stability.



PACS: 05.70.Ce, 61.50.Ah, 61.66.-f, 64.10.+h, 81.05.Mh

Citation: N. Yu. Filonenko, А. I. Babachenko, and G. A. Kononenko, Structural State and Phase Transformations in Fe–В System Alloys, Metallofiz. Noveishie Tekhnol., 42, No. 11: 1559—1572 (2020) (in Ukrainian)

  1. O. V. Efimov, M. M. Pylypenko, T. V. Potanina, V. L. Kavertsev, and T. A. Garkusha, Reaktory i Paroheneratory Enerhoblokiv AES: Skhemy, Protsesy, R31 Materialy, Konstruktsiyi, Modeli [Reactors and Steam Generators of NPP Power Units: Circuits, Processes, R31 Materials, Designs, Models] (Kharkiv: TOV 'V Spravi': 2017) (in Russian).
  2. O. Kubaschewski, IRON-Binary Phase Diagrams (Springer Science & Business Media: 2013) (in Spanish).
  3. F. A. Sidorenko, N. N. Serebrennikov, V. D. Budozhanov, Yu. V. Putintsev, S. N. Trushevskii, V. D. Korabanova, and P. V. Gel'd, High Temp., 15: 36 (1977).
  4. T. Van Rompaey, K. C. Hari Kumar, and P. Wollants, J. Alloys Compd., 334: 173 (2002). Crossref
  5. S. Rades, A. Kornowski, H. Weller, and B. Albert, Chem. Phys. Chem., 12: 1756 (2011). Crossref
  6. V. A. Barinov, G. A. Dorofeev, L. V. Ovechkin, E. P. Elsukov, and A. E. Ermakov, phys. status solidi (a), 123, No. 2: 527 (1991). Crossref
  7. N. P. Lyakishev, Yu. L. Pliner and S. I. Lappo, Borsoderzhashchye Stali i Splavy [Boron-Bearing Steels and Alloys] (Moscow: Metallurgiya: 1986) (in Russian).
  8. Yu. B. Kuzma, Dvoynye i Troynye Sistemy, Soderzhashchiye Bor: Spravochnik [Boron-Bearing Binary and Ternary Systems] (Moscow: Metallurgiya: 1990) (in Russian).
  9. K. Y. Portnoy, M. Kh. Levynskaya, and V. M. Romashov, Poroshkova Metalurgiya, 80, No. 8: 66 (1969) (in Russian).
  10. I. M. Spiridonova, E. V. Sukhovaya, and V. P. Balakin, Metallurgia, 35, No. 2: 65 (1996).
  11. O. V. Sukhova, K. V. Ustinova, and Yu. V. Syrovatko, Visnyk Dnipropetrovskogo Universytetu. Fizyka. Radioelectronika, 21, Iss. 20: 76 (2013).
  12. N. Yu. Filonenko and A. N. Galdina, East European Journal of Physics, 3, No. 2: 49 (2016) (in Ukrainian). Crossref
  13. N. Yu. Filonenko and O. M. Galdina, Fizyka i Khimiya Tverdogo Tila, 17, No. 2: 251 (2016) (in Ukrainian). Crossref
  14. V. Homolova, L. Ciripova, and A. Vyrostkova, JPEDAV, 36: 599 (2015). Crossref
  15. N. Yu. Filonenko, O. Yu. Beryoza, and O. G. Bezrukava, Voprosy Atomnoy Nauki i Tekhniki, 5: 168 (2013) (in Russian).
  16. P. Rogl, Boron-Carbon-Iron System (Eds. G. Effenberg and S. Ilyenko) Ternary Alloy Systems. Subvol. D, Part 1 (Berlin: Heidelberg: 2008), p. 279. Crossref
  17. E. Kneeller and Y. Khan, Z. Metallkde, 78, No. 12: 825 (1987).
  18. Marie-Aline Van Ende and In-Ho Jung, J. Alloys Compd., 548: 133 (2013). Crossref
  19. Y. Du, J. Schuster, Y. Chang, Z. Jin, and B. Huang, Z. Metallkde, 93(11):1157 (2002). Crossref
  20. M. I. S. T. Faria, T. Leonardi, Gilberto Carvalho Coelho, Carlos Angelo Nunes, and Roberto Ribeiro de Avillez, Materials Characterization, 58(4): 358 (2006). DOI: 10.1016/j.matchar.2006.05.014 Crossref
  21. N. Yu. Filonenko, O. Yu. Bereza, and O. G. Bezrukava, Metallofiz. Noveishie Tekhnol., 35, No. 8: 1101 (2013) (in Ukrainian).
  22. N. Yu. Filonenko, Visnyk KNU. Fizyka, 23: 49 (2015).
  23. N. Yu. Filonenko and A. N. Galdina, Proc. of the 7th IEEE 'International Conference on Nanomaterials: Application and Properties' (Sept. 9-14, 2017) (Zatoka: 2017), vol. 6, No. 3. p. 003NNSA25. Crossref
  24. N. Yu. Filonenko, A. N. Galdina, and N. A. Ivanov, Proc. of the 8th IEEE 'International Conference on Nanomaterials: Application and Properties' (Sept. 9-14, 2018) (Zatoka: 2018) p. 01SPN53. - 4 p. Crossref
  25. G. M. Poletti and L. Battezzati, Calphad, 43: 40 (2013). Crossref
  26. J. Miettinen, V-V. Visuri, T. Fabritius, N. Milcheva, and G. Vassilev, Archives of Metallurgy and Materials, 64(4):1239 (2019). Crossref
  27. Tatsuya Tokunagaa, Hiroshi Ohtani, and Mitsuhiro Hasebe, Calphad, 28: 354 (2004). Crossref
  28. S. V. Tverdokhlebova, Visnyk Dnipropetrovskogo Universytetu. Seriya Fizika. Radioelektronika, 14, No. 12/1: 100 (2007) (in Russian).
  29. Lois A. Girifalco, Statistical Mechanics of Solids (Oxford: University Press: 2000).
  30. T. Van Rompaey, K. C. Kumar, and P. Wollants, J. Alloys Compd., 334:173 (2002). Crossref
  31. R. A. Roble and D. R. Waldbaum, Thermodynamic Properties of Minerals and Related Substances at 298.15 K (25.0°C) and One Atmosphere (1.013 Bars) Pressure and at Higher Temperatures (Orton Memorial Library the OHIO State University 155 S. Oval Drive, 1970), p. 262.
  32. A. T. Dinsdale, SGTE Data for Pure Elements (NPL Materials Centre, Division of Industry and Innovation, National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK. 1991), p. 174.
  33. J. W. Gibbs, Elementary Principles in Statistical Mechanics (NewYork: Scribner's Son: 1902: New York: Reprinted by Dover: 1960), p. 325.
  34. E. D. Soldatova, J. Molecular Liquids, 127(13): 603 (2006). Crossref
  35. R. B. Griffiths, Phys. Rev. A 2:1047 (1970). Crossref
  36. P. Bazarov, Termodinamika [Thermodynamics] (Moscow: Vysshaya Shkola: 2010) (in Russian).