Anomalous Downshift of Electronic Bands in Fe(Se, Te) in Superconducting State

Yu. V. Pustovit$^{1}$, O. V. Prokopenko$^{1}$, A. A. Kordyuk$^{2,3}$

$^{1}$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 02.07.2020; final version - 16.09.2020. Download: PDF

In this article we are provided the temperature dependent angle-resolved photoemission spectroscopy (ARPES) study of different iron-based superconductors (FeSe, Fe(Se, Te), Ba(Co, Fe)As) in the vicinity of the superconducting transition. The existence of a strong downshift of the bands in the centre of the Brillouin zone (BZ) with temperature decrease is established for Fe(Se, Te). The value of such a shift for temperatures 4 K and 20 K is approximately 5 meV. Such changes are not observed for the $d_{yz}$ band of Ba(Co, Fe)$_2$As$_2$ and for the $d_{xz}$ band of FeSe. The observed strong dependence is likely to be the result of an interplay between the superconducting state and the mechanism that shifts bands in the temperature range from 20 to 300 K.

Key words: iron-based superconductors, ARPES, FeSe, electronic band structure, iron pnictides, iron chalcogenides.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i12/1609.html

DOI: https://doi.org/10.15407/mfint.42.12.1609

PACS: 74.20.Mn, 74.25.Jb, 74.70.Xa, 78.70.-g, 79.60.Bm, 82.80.Pv

Citation: Yu. V. Pustovit, O. V. Prokopenko, and A. A. Kordyuk, Anomalous Downshift of Electronic Bands in Fe(Se, Te) in Superconducting State, Metallofiz. Noveishie Tekhnol., 42, No. 12: 1609—1615 (2020)


REFERENCES
  1. Yu. V. Pustovit and A. A. Kordyuk, Low Temp. Phys., 42: 995 (2016). Crossref
  2. X. Liu, L. Zhao, S. He, J. He, D. Liu, D. Mou, B. Shen, Y. Hu, J. Huang, and X. J. Zhou, J. Physics Condens. Matter, 27, No. 18: 183201 (2015). Crossref
  3. J. A. Sobota, Yu He, Z.-X. Shen, https://arxiv.org/pdf/2008.02378.pdf
  4. V. K. Thorsmolle, M. Khodas, Z. P. Yin, C. Zhang, S. V. Carr, P. Dai, and G. Blumberg, Phys. Rev. B, 93: 054515 (2016). Crossref
  5. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys., 90: 015005 (2018). Crossref
  6. R. Khymyn, I. Lisenkov, J. Voorheis, O. Sulymenko, O. Prokopenko, V. Tiberkevich, J. Akerman, and A. Slavin, Sci. Rep.. 8: 15727 (2018). Crossref
  7. O. Sulymenko, O. Prokopenko, I. Lisenkov, J. Åkerman, V. Tyberkevych, A. N. Slavin, and R. Khymyn, J. Appl. Phys., 124: 152115 (2018). Crossref
  8. Y. S. Kushnirenko, A. A. Kordyuk, A. V. Fedorov, E. Haubold, T. Wolf, B. Büchner, and S. V. Borisenko, Phys. Rev. B, 96: 100504 (2017). Crossref
  9. L. C. Rhodes, M. D. Watson, A. A. Haghighirad, M. Eschrig, and T. K. Kim, Phys. Rev. B, 95: 195111 (2017). Crossref
  10. Yu. V. Pustovit and A. A. Kordyuk, Low Temp. Phys., 45: 1172 (2019). Crossref
  11. A. A. Kordyuk, Low Temp. Phys., 40: 286 (2014). Crossref
  12. P. Zhang, P. Richard, T. Qian, Y.-M. Xu, X. Dai, and H. Ding, Rev. Sci. Instr., 82: 043712 (2011). Crossref
  13. Yu. V. Pustovit, V. V. Bezguba, and A. A. Kordyuk, Metallofiz. Noveishie Tekhnol., 39, No. 6: 709 (2017) (in Ukrainian). Crossref
  14. A. A. Kordyuk, S. V. Borisenko, M. Knupfer, and J. Fink, Phys. Rev. B, 67: 064504 (2003). Crossref
  15. Y. S. Kushnirenko, A. V. Fedorov, E. Haubold, S. Thirupathaiah, T. Wolf, S. Aswartham, I. Morozov, T. K. Kim, B. Buchner, and S. V. Borisenko, Phys. Rev. B, 97: 180501 (2018). Crossref