Peculiarities of Pore Structure Formation upon Zr–Ti–Nb Alloys Synthesis Using Hydrogenated Powder Blends

D. V. Oryshych, O. M. Ivasishin, P. E. Markovsky, D. G. Savvakin, O. O. Stasiuk, V. I. Bondarchuk

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 21.07.2020. Download: PDF

The volume changes and microstructure evolution of heterogeneous powder blends are investigated at different stages of Zr–Ti–Nb alloys synthesis. The factors of the pore system transformation during sintering of powder blends are determined. Hydrogenated and non-hydrogenated powders demonstrate different volume changes on heating (decrease in the volume of hydride particles during hydrogen desorption and thermal expansion of non-hydrogenated particles). The difference in volume changes at insufficient bonding forces between particles, especially ZrH$_2$, cause creation of gaps between compacted powders, while Kirkendall’s porosity on chemical homogenization makes an additional contribution to residual porosity. The residual porosity can be reduced by using hydrogenated powders only (TiH$_2$, ZrH$_2$, hydrogenated Zr–Nb and Ti–Nb master alloys), which provides similar volume effects during hydrogen desorption from all components of the system and reduces the contribution of Kirkendall’s porosity.

Key words: hydrogenated powders, volume changes, microstructure, sintering, porosity.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i12/1681.html

DOI: https://doi.org/10.15407/mfint.42.12.1681

PACS: 61.43.Gt, 61.66.Dk, 61.72.Ff, 62.20.-x, 66.30.-h, 81.05.Bx, 81.05.Rm, 81.20.Ev

Citation: D. V. Oryshych, O. M. Ivasishin, P. E. Markovsky, D. G. Savvakin, O. O. Stasiuk, and V. I. Bondarchuk, Peculiarities of Pore Structure Formation upon Zr–Ti–Nb Alloys Synthesis Using Hydrogenated Powder Blends, Metallofiz. Noveishie Tekhnol., 42, No. 12: 1681—1700 (2020) (in Ukrainian)


REFERENCES
  1. M. Niinomi, Metall. Mater. Trans. A, 33: 477 (2002). Crossref
  2. M. Niinomi, M. Nakai, and J. Hieda, Acta Biomaterialia, 8: 3888 (2012). Crossref
  3. M. Takahashi, E. Kobayashi, H. Doi, T. Yoneyama, and H. Hamanaka, J. Japan Institute Metals Materials, 64, Iss. 11: 1120 (2000). Crossref
  4. I. O. Skyba, O. M. Ivasishin, O. P. Karasevs'ka, and P. Ye. Markovs'kyy, Biosumisnyy Splav iz Nyz'kym Modulem Pruzhnosti na Osnovi Systemy Tsyrkoniy-Tytan [Biocompatible Alloy with Low Modulus of Elasticity Based on Zirconium-Titanium System], Patent of Ukraine No. 102455 (Published July 10, 2013) (in Ukrainian).
  5. H. C. Hsu, S. C. Wu, Y. C. Sung, and W. F. So, J. Alloys Compd., 488: 279 (2009). Crossref
  6. G. J. Yang and T. Zhang, J. Alloys Compd., 392: 291 (2005). Crossref
  7. O. M. Ivasishin, A. A. Popov, O. P. Karasevskaya, P. E. Markovskiy, B. N. Mordyuk, I. A. Skiba, and A. G. Illarionov, Metallofiz. Noveishie Tekhnol., 33, No. 5: 675 (2011) (in Russian).
  8. S. V. Grib, A. G. Illarionov, A. A. Popov, and O. M. Ivasishin, Fiz. Met. Metallogr., 115, No. 6: 600 (2014). Crossref
  9. A. N. Timoshevskii, S. Yablonovskyy, and O. M. Ivasishin, Functional Materials, 19, No. 2: 266 (2012).
  10. A. Bandyopadhyay, F. Espana, V. K. Balla, S. Bose, Y. Ohgami, and N. M. Davies, Acta Biomaterialia, 6, No. 4: 1640 (2010). Crossref
  11. J. P. Li, P. Habibovic, M. van den Doel, C. E. Wilson, J. R. de Wijn, C. A. van Blitterswijk, and K. de Groot, Biomaterials, 28, Iss. 18: 2810 (2007). Crossref
  12. D. V. Oryshych, D. H. Savvakin, O. O. Stasyuk, and B. Ya. Melamed, Metallofiz. Noveishie Tekhnol., 41, No. 2: 213 (2019) (in Ukrainian). Crossref
  13. O. M. Ivasishin and D. H. Savvakin, Physicochemical Mechanics of Materials, 51, No. 4: 27 (2015) (in Ukrainian).
  14. O. M. Ivasishin, D. G. Savvakin, V. S. Moxson, V. A. Duz, and C. Lavender, Proc. of 11th World Conf. on Titanium (June 3-7, 2007) (Kyoto: Japan Institute of Metals: 2007), vol. 1, p. 757.
  15. O. M. Ivasishin and D. G. Savvakin, Key Eng. Mater., 436: 113 (2010). Crossref
  16. F. H. Froes and D. Eylon, Inter. Mater. Rev., 35, No. 3: 162 (1990). Crossref
  17. Dmytro Savvakin, Orest Ivasishin, Denys Oryshych, Oleksandr Stasiuk, and Li Yuanyuan, 14th World Conf. on Titanium (June 10-14, 2019) (Nantes, France: 2019).
  18. D. G. Savvakin and N. M. Gumenyak, Metallofiz. Noveishie Tekhnol., 35, No. 3: 349 (2013) (in Russian).
  19. D. H. Savvakin, M. M. Humenyak, M. V. Matviychuk, and O. H. Molyar, Physicochemical Mechanics of Materials, 47, No. 5: 72 (2011) (in Ukrainian).
  20. M. P. Puls, San-Qiang Shi, and J. Rabier, J. Nuclear Materials, 336, No. 1: 73 (2005). Crossref
  21. M. A. Filyand and E. I. Semenova, Svoystva Redkikh Elementov. Spravochnik [Properties of rare elements. Handbook] (Moscow: Metallurgiya: 1964) (in Russian).
  22. P. R. V. Evans, J. Less-Common Metals, 4: No. 1: 78 (1962). Crossref
  23. O. M. Ivasishin, O. P. Karasevska, D. G. Savvakin, M. M. Humenyak, Ya. I. Melnyk, and O. O. Stasiuk, Metallofiz. Noveishie Tekhnol., 38, No. 11: 1527 (2016) (in Ukrainian). Crossref
  24. DICTRA TM Database, www.dictra.com