Temperature Stability of Crystalline Structure, Electro- and Magnetotransport Properties of Functional Nanostructures of Spin-Valve Type Ni/Dy/Co

A. M. Lohvynov$^{1}$, D. M. Kondrakhova$^{2}$, I. O. Shpetnyi$^{1}$, I. V. Cheshko$^{1}$, S. I. Vorobiov$^{1,2}$, A. M. Chornous$^{1}$

$^{1}$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine
$^{2}$Pavol Jozef Šafárik University in Košice, 2 Šrobárova Str., SK-04180 Košice, Slovak Republic

Received: 21.04.2020; final version - 11.12.2020. Download: PDF

The relative temperature stability of the phase state, electro- and magnetotransport properties of functional metallic film nanostructures of the spin-valve type Ni/Dy/Co, in the temperature range of 460–800 K, is shown. As established, the thickness of the Dy layer within $d_{\textrm{Dy}}$ = 5–30 nm at thickness of Ni and Co layers of 5 nm and 20 nm, respectively, does not significantly affect the crystal structure of the samples, the phase composition of which corresponds to f.c.c.-Ni + quasi-amorphous-Dy + h.c.p.-Co + f.c.c.-Co. The studied functional structures are characterized by the anisotropic nature of the magnetoresistance dependencies on the direction of the applied external magnetic field in relation to the direction of the current, which does not depend on the layer thickness and temperature of treatment. The maximum value of magnetoresistance is observed in the as-deposited films at $d_{\textrm{Dy}}$ = 30 nm and is 0.5% for measurement at room temperature, and after annealing up to 800 K—at $d_{\textrm{Dy}}$ = 20 nm. The value of the coercive force does not show a pronounced dependence on the thickness of the Dy layer. Annealing the samples to 800 K leads to the growth of the value of the coercive force. A sharp change of the values of magnetoresistance and coercive force at the changing of the samples orientation in an external magnetic field allows considered this film nanostructure as a functional element of electronics.

Key words: functional film structures, phase composition, electrical-physical properties, magnetoresistance, coercive force.

URL: http://mfint.imp.kiev.ua/en/abstract/v43/i02/0143.html

DOI: https://doi.org/10.15407/mfint.43.02.0143

PACS: 68.55.Nq, 73.50.Jt, 73.61.At, 75.30.Gw, 81.15.Jj

Citation: A. M. Lohvynov, D. M. Kondrakhova, I. O. Shpetnyi, I. V. Cheshko, S. I. Vorobiov, and A. M. Chornous, Temperature Stability of Crystalline Structure, Electro- and Magnetotransport Properties of Functional Nanostructures of Spin-Valve Type Ni/Dy/Co, Metallofiz. Noveishie Tekhnol., 43, No. 2: 143—157 (2021) (in Ukrainian)


REFERENCES
  1. F. Schwierz, Electronics, 30, No. 5: 5020030 (2016). Crossref
  2. X. Wang, Z. Cheng, G. Liu, X. Dai, R. Khenata, L. Wang, and A. Bouhemadou, IUCrJ, 4: 758 (2017). Crossref
  3. S. M. Zanjani and M. C. Onbasli, AIP Adv., 9: 035024 (2019). Crossref
  4. M. Fix, R. Schneider, J. Bensmann, S. M. de Vasconcellos, R. Bratschitsch, and M. Albrecht, Appl. Phys. Lett., 116: 012402 (2020). Crossref
  5. G. I. Miletić and Z. Blaz̆ina, J. Magn. Magn. Mater., 268: 205 (2004). Crossref
  6. T. Ferté, N. Bergeard, L. Le Guyader, M. Hehn, G. Malinowski, E. Terrier, E. Otero, K. Holldack, N. Pontius, and C. Boeglin, Phys. Rev. B, 96: 134303 (2017). Crossref
  7. K. G. Balymov, E. V. Kudyukov, V. O. Vas'kovskiy, O. A. Adanakova, N. A. Kulesh, E. A. Stepanova, and A. S. Rusalina, J. Phys.: Conf. Ser., 1389: 012014 (2019). Crossref
  8. S. Noboru and K. Habu, J. Appl. Phys., 61: 4287 (1987). Crossref
  9. S. Mangin, M. Gottwald, C.-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. Fullerton, Nat. Mater., 13: 286 (2014). Crossref
  10. D. Steil, S. Alebrand, A. Hassdenteufel, M. Cinchetti, and M. Aeschlimann, Phys. Rev. B, 84: 224408 (2011). Crossref
  11. J.-Y. Chen, L. He, J.-P. Wang, and M. Li, Phys. Rev. Applied, 7: 021001 (2017). Crossref
  12. S. I. Vorobiov, I. M. Lytvynenko, I. O. Shpetnyi, O. V. Shutylieva, and A. M. Chornous, Metallofiz. Noveishie Tekhnol., 37, No. 8: 1049 (2015) (in Ukrainian). Crossref
  13. L. Xi, J. H. Du, J. J. Zhou, J. H. Ma, X. Y. Li, Z. Wang, Y. L. Zuo, and D. S. Xue, Thin Solid Films, 520, No. 16: 5421 (2012). Crossref
  14. A. V. Svalov, G. V. Kurlyandskaya, V. O. Vas'kovskiy, A. Larrañaga, R. D. Della Pace, C.C.P. Cid, Superlattices Microstures, 90: 242 (2016). Crossref
  15. Y. Kurokawa, A. Shibata, and H. Awano, AIP Adv., 7: 055917 (2017). Crossref
  16. M. H. Demydenko, S. I. Protsenko, D. M. Kostyuk, and I. V. Cheshko, J. Nano- Electron. Phys., 3: 81 (2011).
  17. S. I. Vorobiov, I. V. Cheshko, A. M. Chornous, and I. O. Shpetnyi, Metallofiz. Noveishie Tekhnol., 35, No. 12: 1645 (2013) (in Ukrainian).
  18. S. I. Vorobiov, I. V. Cheshko, A. M. Chornous, H. Shirzadfar, and O. V. Shutylieva, J. Nano- Electron. Phys., 6: 02022 (2014).
  19. S. I. Vorobiov, T. M. Shabelnyk, O. V. Shutylieva, I. M. Pazukha, and A. M. Chornous, Mater. Res. Express, 5: 036412 (2018). Crossref
  20. M. Li and W. Han, Calphad, 33, No. 3: 517 (2009). Crossref
  21. X. Su, W. Zhang, and Z. Du, Z. Metallkd., 89: 522 (1998).
  22. Q. Zhy, Y. Zhuang, J. Liang, J. Li, and K. Zhou, J. Rare Earth, 27, No. 1: 100 (2009). Crossref
  23. J. A. Alonso, R. Hojvat de Tendler, D. A. Barbiric, and J. M. Riveiro, J. Phys.: Condens. Matter., 14: 8913 (2002). Crossref
  24. T. Schmidt and H. Hoffmann, J. Magn. Magn. Mater., 248: 181 (2002). Crossref
  25. J. A. Gonzalez, J. P. Andres, M. A. Arranz, M. A. Lopez de la Torre, and J. M. Riveiro, J. Phys.: Condens. Matter, 14: 5061 (2002). Crossref
  26. V. O. Vas'kovskiy, A. V. Svalov, A. V. Gorbunov, N. N. Schegoleva, and S. M. Zadvorkin, Physica B, 315: 143 (2002). Crossref
  27. V. Vand, Pros. Phys. Soc., 55, No. 3: 222 (1943). Crossref
  28. M. Gottwald, M. Hehn, F. Montaigne, D. Lacour, G. Lengaigne, S. Suire, and S. Mangin, J. Appl. Phys., 111: 083904 (2012). Crossref
  29. T. M. Shabelnyk, O. V. Shutylieva, S. I. Vorobiov, I. M. Pazukha, and A. M. Chornous, Int. J. Mod. Phys. B, 32: 1750275 (2018). Crossref
  30. S. I. Vorobiov, O. V. Shutileva, I. A. Shpetnyi, and A. M. Chornous, J. Nano- Electron. Phys., 4: 04026 (2012).
  31. H. Nagura, K. Akanashi, S. Mitani, K. Saito, and T.Shima, J. Magn. Magn. Mater., 240: 183 (2002). Crossref
  32. K. W. Geng, F. Pan, and R. H. Yao, J. Appl. Phys., 104: 073902 (2008). Crossref
  33. S. Vorobiov, Ia. Lytvynenko, T. Hauet, M. Hehn, D. Derecha, and A. Chornous, Vacuum, 120: 9 (2015). Crossref
  34. M. Diaz-Michelena, P. Cobos, and C. Aroca, Sens. Actuators A, 222: 149 (2015). Crossref
  35. P. Dimitrova, S. Andreev, and L. Popova, Sens. Actuators A, 147: 387 (2008). Crossref