Synthesis of Ultrafine Tungsten-Based Powders by Reduction in Hydrogen

N. F. Kushchevska, M. G. Zaliubovskyi, V. V. Malyshev

Open International University of Human Development ‘Ukraine’, 23 Lvivska Str., UA-03115 Kyiv, Ukraine

Received: 27.05.2020; final version - 08.12.2020. Download: PDF

Method for obtaining ultrafine powders on the base of tungsten is developed. Synthesis regimes allowing to obtain the powders on the base of tungsten with a given set of properties are elaborated. For the synthesis of tungsten-based powders with a given composition, a method combining chemical deposition of metal hydroxides from solutions of the corresponding salts to obtain metal oxides with their subsequent reduction in hydrogen is used. An intermediate for the production of tungsten-based powders is obtained in two methods. According to the first method, the product is fabricated by mechanical mixing of nickel, iron, and cobalt hydroxides with tungstic acid. The second one is carried out by mixing tungstic acid with aqueous solutions of nickel, iron, and cobalt salts with the subsequent evaporation of the mixture to dryness with continuous stirring and washing with acetone or alcohol to remove chlorine anions. The following characteristics of doped powders on the base of tungsten are studied: chemical and phase compositions, distributions of sizes of particles and their agglomerates.

Key words: chemical deposition, reduction in hydrogen, ultrafine tungsten-based powders, chemical composition, phase composition.

URL: http://mfint.imp.kiev.ua/en/abstract/v43/i02/0173.html

DOI: https://doi.org/10.15407/mfint.43.02.0173

PACS: 61.05.сp, 61.46.Df, 61.72.S-, 81.07.Bc, 81.10.Dn, 81.70.Jb

Citation: N. F. Kushchevska, M. G. Zaliubovskyi, and V. V. Malyshev, Synthesis of Ultrafine Tungsten-Based Powders by Reduction in Hydrogen, Metallofiz. Noveishie Tekhnol., 43, No. 2: 173—181 (2021) (in Ukrainian)


REFERENCES
  1. M. Debata and A. Upadhyaya, J. Mater. Sci., 39: 2539 (2004). Crossref
  2. D. Rittel and G. Weisbrod, J. Fract., 212: 87 (2001). Crossref
  3. S. Eroglu, H. Erken, and T. Baykara, Scr. Mater., 38, No. 1: 131 (1998). Crossref
  4. Wei Zhigang, J. Impact Eng., 24: 747 (2000). Crossref
  5. V. V. Malyshev and A. I. Hab, Physicochemical Mechanics of Materials, No. 5: 61 (2005) (in Ukrainian).
  6. V. V. Malyshev, Zashchita Metallov, 43, No. 6: 607 (2007) (in Russian).
  7. V. V. Malyshev, Fiziko-Khimiya Poverkhnosti i Zashchita Metallov, 45, No. 4: 339 (2009) (in Russian).
  8. A. A. Fadeev, A. V. Samokhin, N. V. Alekseev, and Yu. V. Tsvetkov, Vestnik Nizhegorodskogo Universiteta im. N. I. Lobachevskogo, 2, No. 2: 66 (2013) (in Russian).
  9. T. Ryu, H. Y. Sohn, and K. S. Hwang, High-Temperature Materials and Processes, 27: 91 (2008). Crossref
  10. J. C. Kim and B. K. Kim, Scr. Mater., 50: 969 (2004). Crossref
  11. Y. Su, H.-C. Lin, and T.-K. Yang, Mater. Trans., 50, No. 11: 2593 (2009). Crossref
  12. P. K. Sahoo, S. Srinivas, and K. Kamal, J. Mater. Res., 26, No. 5: 652 (2011). Crossref
  13. L. Chen, Ch. Huang, G. Xu, L. Miao, J. Shi, and X. Xiao, J. Nanomaterials, 2012: Article No. 3 (2012). Crossref
  14. S. Dine, S. Aïd, K. Ouaras, V. Malard, M. Odorico, N. Herlin-Boime, A. Habert, A. Gerbil-Margueron, Ch. Grisolia, J. Chêne, G. Pieters, B. Rousseau, and D. Vrel, Advanced Powder Technology, 26, No. 5: 1300 (2015). Crossref
  15. H. A. Baranov, M. V. Havrysh, and D. D. Sanykovych, Visnyk KPI. Mashynobuduvannya, No. 63: 42 (2011) (in Russian).
  16. V. V. Malyshev and A. I. Hab, Physicochemical Mechanics of Materials, 40, No. 4: 555 (2004) (in Ukrainian). Crossref
  17. V. V. Malyshev and A. I. Hab, Metalurhiya: Naukovi Pratsi Zaporiz'koyi Derzhavnoyi Inzhenernoyi Akademiyi, Iss. 18: 84 (2008) (in Ukrainian).
  18. Y. Hara, N. Minami, H. Matsumoto, and H. Itagaki, Appl. Catal., A, 332, Iss. 2: 289 (2007). Crossref
  19. X.-wei Wu, J.-song Luo, B.-zhi Lu, Ch.-hui Xie, Zh.-ming Pi, M.-zong Hu, T. Xu, G.-gen Wu, Zh.-ming Yu, and D.-qing Yi, Transactions of Nonferrous Metals Society of China, 19, Suppl. 3: 785 (2009). Crossref
  20. W. V. Schulmeyer and H. M. Ortner, Int. J. Refractory Metals and Hard Materials, 20, Iss. 4: 261 (2002). Crossref
  21. A. F. Korzh, Yu. F. Lonin, and Yu. O. Pilipets, Fizicheskaya Inzheneriya Poverkhnosti, 5, No. 1-2: 98 (2007) (in Russian).
  22. V. V. Gostishchev, S. N. Khimukhin, M. A. Teslina, and I. A. Astapov, Vestnik TOGU, No. 4: 101 (2012) (in Russian).
  23. M. I. Alymov, I. V. Tregubova, K. B. Povarova, A. B. Ankudinov, and E. V. Evstratov, Russ. Metall., No. 3: 217 (2006) (in Russian). Crossref
  24. A. A. Gromov, Y.-S. Kwon, and P.-P. Choi, Scr. Mater., 52, No. 5: 375 (2005). Crossref
  25. Y. S. Kwon, A. A. Gromov, A. P. Ilyin, A. A. Ditts, J. S. Kim, S. H. Park, and M. H. Hong, Int. J. Refractory Metals and Hard Materials, 22, No. 6: 235 (2004). Crossref
  26. O. V. Tolochko, O. G. Klimova, and S. S. Ordanian, Rev. Adv. Mater. Sci., 21: 192 (2009).
  27. M. Sokić, Ž. Kamberović, V. Nikolić, B. Marković, M. Korać, Z. Anđić, and M. Gavrilovski, Scientific World Journal, 2015: 9 (2015). Crossref
  28. K. V. Manukyan, A. G. Avetisyan, C. E. Shuck, H. A. Chatilyan, S. Rouvimov, S. L. Kharatyan, and A. S. Mukasyan, J. Physical Chemistry C, 119, Iss. 28: 16131 (2015). Crossref
  29. D. Wegner, O. Devisme, F. Patisson, and D. Abblitzen, Sohn International Symposium (Aug. 27-31, 2006) (San Diego: 2006), vol. 2, p. 111.
  30. S. Dean and E. Brown, Thermochim. Acta, 285, No. 2: 361 (1996). Crossref