Change of Morphology and Sizes of Primary Intermetallides During Solidification of Alloy Based on Al–Cu System with Rare-Earth Metals under Action of Cooling and Constant Magnetic Field

O. V. Seredenko

Physico-Technological Institute of Metals and Alloys, NAS of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 29.06.2020. Download: PDF

The problem of using aluminium alloys with rare-earth metals (REM) obtained by conventional casting methods (cooling rate $\sim$(1–10) K/s) is a formation of large-size primary intermetallides ($\sim$100 $\mu$m) of various shapes. Now, production of high-quality aluminium alloys doped by rare-earth metals is based on grinding these inclusions. Corresponding techniques are expensive. Constant magnetic field with flux density 0.1 T is used to act on the shapes and sizes of primary intermetallides in a cast alloy based on Al–Cu system with 13% mass. REM. Such action is easy to implement and it is inexpensive. Alloy samples are obtained in cooling rates 4, 10, 11, 15 and 30 K/s. Magnetic field is applied to the alloy during its cooling and solidification. The metallographic method is used to study the cast structure of samples, obtained without and under influence of a magnetic field. The alloy contains intermetallides with different sizes and morphology. On the surface sections, inclusions with characteristic forms are observed, they are combined into three groups: 1—faceted, 2—with wave contours, 3—contained cracks, integrity breakdowns and inclusions fractured on fragments. As determined, an increase of cooling rate results rising in the number of inclusions of group 3. The magnetic field intensifies this tendency, increases the cracks number in crystals and reduces the size of the formed fragments. As a result, the grinding of majority intermetallides occurs due to their destruction into compact fragments with sizes of 3–15 $\mu$m. The magnetic field also contributes to dispersion of inclusions parts in the alloy volume.

Key words: Al–Cu–REM alloy, intermetallides, cooling rate, solidification, magnetic field.

URL: http://mfint.imp.kiev.ua/en/abstract/v43/i02/0219.html

DOI: https://doi.org/10.15407/mfint.43.02.0219

PACS: 61.25.Mv, 61.72.Mm, 71.20.Lp, 81.30.Fb, 81.40.Rs

Citation: O. V. Seredenko, Change of Morphology and Sizes of Primary Intermetallides During Solidification of Alloy Based on Al–Cu System with Rare-Earth Metals under Action of Cooling and Constant Magnetic Field, Metallofiz. Noveishie Tekhnol., 43, No. 2: 219—233 (2021) (in Ukrainian)


REFERENCES
  1. X. Yu, Z. Zhao, D. Shui, H. Dai, J. Sun, and X. Dong, Materials, 9, No. 12: 1521 (2019). Crossref
  2. E. Aghaie, Effect of Cerium Addition on Improvement of Mechanical Properties of B319 Power Train Aluminium Alloy (Thesis of Disser. for Master of Applied Sci.) (Okanagan: The University of British Columbia: 2019).
  3. Yu. Xinxiang, Yin Dengfeng, Yu Zhiming, Zhang Yiran, and Li Shufei, Rare Met. Mater. Eng., 45, Iss. 7: 1687 (2016). Crossref
  4. J. Du, D. Ding, W. Zhang, Z. Xu, Y. Gao, G. Chen, W. Chen, X. You, R. Chen, Y. Huang, and J. Tang, Appl. Surf., 422: 221 (2017). Crossref
  5. H. C. Liao, C. Liu, C. Lu, and Q. G. Wang, Inv. J. Cast Met. Res., 28, Iss. 4: 213 (2015). Crossref
  6. D. H. Xiao, J. N. Wang, and D. Y. Ding, Mater. Sci. Technol., 20, Iss. 10: 1237 (2004). Crossref
  7. R. Ahmad and M. B. A. Asmael, Mater. Manuf. Processes, 31, Iss. 15: 1948 (2016). Crossref
  8. D. Weiss, Aluminium Alloys and Composites (Ed. K. Cooke) (IntechOpen: 2020), p. 419. Crossref
  9. A. V. Khvan, Optimizatsiya Fazovogo Sostava Vysokotekhnologichnykh Alyuminievykh Splavov s Kompozitnoy Strukturoy na Osnove Se- i Ca-Soderzhashchikh Evtektik [Optimization of the Phase Composition of High-tech Aluminium Alloys with a Composite Structure Based on Ce- and Ca-Containing Eutectics] (Disser. for Cand. Tech. Sci.) (Moscow: MISiS: 2008) (in Russian).
  10. Z. C. Sims, O. R. Rios, D. Weigs, P. E. A. Turchi, A. Perron, J. R. I. Lee, T. T. Li, J. A. Hammons, B. Hancen, T. M. Willey, Ke An, Y. Chen, A. H. King, and S. K. McCall, Materials Horizons, 6, No. 4: 1070 (2017). Crossref
  11. D. Weiss, J. Mater. Eng. Perform., 28: 1903 (2019). Crossref
  12. W. Wang, X. Zyang, Z. Gao, Y. Jia, L. Ye, D. Zheng, and L. Liu, J. Alloys Compound., 491, Iss. 1-2: 366 (2010). Crossref
  13. V. M. Fedorov, Yu. M. Ponomarenko, A. M. Diskin, and Z. V. Makarova, Tekhnologiya Legkikh Splavov, No. 9: 14 (1983) (in Russian).
  14. D. Weiss, Advanced Casting Technologies (Ed. T. R Vijayaram) (IntechOpen: 2018), p. 557. Crossref
  15. F. Czerwinski, J. Mater. Sci., 55, No. 12: 24 (2020). Crossref
  16. Z. Zhang, Y. Wang, and X. Bian, J. Cryst. Growth, 260, Nos. 3-4: 557 (2004). Crossref
  17. E. A. Naumova, Razrabotka Nauchnykh Osnov Legirovaniya Alyuminievykh Splavov Evtekticheskogo Tipa Kaltsiem [Development of the Scientific Basis for the Alloying of Eutectic-Type Aluminium Alloys with Calcium] (Disser. for Dr. Tech. Sci.) (Moscow: MISiS: 2019) (in Russian).
  18. A. A. Bespalyy, Protsessy Litya, No. 4: 3 (2012) (in Russian).
  19. E. A. Naumova, Issledovanie Struktury i Svoystv Zharoprochnykh Liteynykh Splavov Evtekticheskogo Tipa na Baze Sistemy Alyuminiy-Tseriy [Investigation of the Structure and Properties of Heat-Resistant Eutectic-Type Cast Alloys Based on Aluminium-Cerium System] (Disser. for Cand. Tech. Sci.) (Moscow: MISiS: 1999) (in Russian).
  20. Dzh. U. Ratter, Zhidkie Metally i Ikh Zatverdevanie [Liquid Metals and their Solidification] (Moscow: Metallurgizdat: 1962). (in Russian).
  21. T. Zheng, B. Zhou, J. Wang, S. Shuai, Y. Zhang, W. Ren, Z. Ren, F. Debray, and E. Beaugnon, Mater. Sci. Eng. A, 733: 170 (2018). Crossref
  22. X. Li, Y. Fautrelle, Z. Ren, A. Gagnoud, Y. Zhane, and C. Esling, J. Cryst. Growth, 318, No. 1: 23 (2011). Crossref
  23. X. Li, Z. Ren, A. Gagnoud, O. Budenkova, A. Bojarevics, and Y. Fautrelle, ISIJ Int., 19, Suppl. 1: 9 (2012).
  24. Y. Shen, Z. Ren, X. Li, W. Ren and Y. Xi, J. Cryst. Growth, 336, No. 1: 67 (2011). Crossref
  25. N. A. Aristova and I. F. Kolobnev, Termicheskaya Obrabotka Liteynykh Alyuminievykh Splavov [Heat Treatment of Foundry Aluminium Alloys] (Moscow: Metallurgiya: 1977) (in Russian).
  26. E. L. Skuybeda, Lit'e i Metallurgiya, No. 4: 42 (2013) (in Russian).
  27. V. A. Tiller, Zhidkie Metally i Ikh Zatverdevanie [Liquid Metals and their Solidification] (Moscow: Metallurgizdat: 1962). (in Russian).
  28. W. Ren, Z. Ren, K. Deng, Y. Zhong, Z. Lei, and X. Li, Steel Res. Int., 78, Iss. 5: 373 (2007). Crossref
  29. Y. He, Nucleation and Magnetism of Supercooled Co-B Metallic Liquid under High Magnetic Field (Grenoble: 2019) (Thesis of Disser. for Dr. Sci.).
  30. M. N. Sosnenko, Sovremennye Liteynye Formy [Modern Foundry Molds] (Moscow: Mashinostroenie: 1967) (in Russian).
  31. G. I. Batalin, V. P. Kazimirov, and B. F. Dmitruk, Izvestiya AN SSSR. Metally, No. 1: 88 (1972) (in Russian).
  32. Z. Pavlovskiy, Vvedenie v Matematicheskuyu Statistiku [Introduction to Mathematical Statistics] (Moscow: Statistika: 1967) (in Russian).
  33. V. E. Gmurman, Teoriya Veroyatnostey i Matematicheskaya Statistika [Probability Theory and Mathematical Statistics] (Moscow: Vysshaya Shkola: 2004) (in Russian).