Interaction of Solid Particles from a Gas Stream with the Surface of a Flat Nozzle

A. I. Dolmatov$^{1}$, S. A. Polyviany$^{2}$

$^{1}$National Aerospace University ‘Kharkiv Aviation Institute’, 17 Chkalov Str., 61070 Kharkiv, Ukraine
$^{2}$Volochysk Machine-Building Plant of Motor Sich JSC, 1 Nezalezhnost Str., UA-31200 Volochysk, Khmelnytskyi Reg., Ukraine

Received: 08.09.2020; final version - 18.12.2020. Download: PDF

The study of flow of gas with solid particles in a flat nozzle is performed. The parameters of flow of gas with particles of powder in the flow passage of the flat supersonic nozzle are studied, as well the parameters of interaction between the solid particles of the spray deposited material and surface of the target backing plate by means of mathematical modelling of the three-dimensional constant-property flow of the viscous compressed real gas with solid particles. During the mathematical modelling of the process of flow of gas with solid particles by using highly specialized CFX-Pre 16.2 and CFX-Solver Manager 16.2 software packages the fields of parameters in the nozzle’s flow passage and near the target backing plate are obtained.

Key words: deposition, two-phase flow, mathematical modelling, supersonic flow, flat nozzle.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i03/0319.html

DOI: https://doi.org/10.15407/mfint.43.03.0319

PACS: 45.50.-j, 47.27.nf, 47.40.Ki, 47.10.A-

Citation: A. I. Dolmatov and S. A. Polyviany, Interaction of Solid Particles from a Gas Stream with the Surface of a Flat Nozzle, Metallofiz. Noveishie Tekhnol., 43, No. 3: 319—328 (2021)


REFERENCES
  1. A. I. Dolmatov, S. V. Sergeev, M. O. Kurin, V. V. Voronko, and T. V. Loza, Metallofiz. Noveishie Tekhnol. 37, No. 7: 871 (2015). Crossref
  2. L. I. Sedov, Mekhanika Sploshnoy Sredy [Continuum Mechanics] (Moscow: Nauka: 1970) (in Russian).
  3. G. N. Abramovich, Prikladnaya Gazovaya Dinamika [Applied Gas Dynamics] (Moscow: Nauka: 1968) (in Russian).
  4. F. M. White, Fluid Mechanics (New York: McGraw Hill: 2011).
  5. H. Versteeg and W. Malalasekra, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (Harlow: Prentice Hall: 2007).
  6. H. Lomax, Thomas H. Pulliam, and David W. Zingg, Fundamentals of Computational Fluid Dynamics (NASA Ames Research Center: 1999). Crossref
  7. G. Shlikhting, Teoriya Pogranichnogo Sloya [The Boundary Layer Theory] (Moscow: Nauka: 1974) (in Russian).
  8. F. S. Sherman, Viscous Flow (McGraw-Hill College: 1990).
  9. D. C. Wilcox, Turbulence Modeling for CFD (DCW Industries: 2006).
  10. J. D. Anderson, Modern Compressible Flow (Tata McGrawhill India Pvt Ltd: 2012).
  11. P. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press: 2015). Crossref
  12. B. Samareh, O. Stier, V. Lu, and A. Dolatabadi, Journal of Thermal Spray Technol. 18, Nos. 5-6: 934 (2009). Crossref
  13. Tien-Chien Jen, Longjian Li, Wenzhi Cui, Qinghua Chen, and Xinming Zhang, International Journal of Heat and Mass Transfer, 48: 4384 (2005). Crossref