Effect of Ultrasonic Cavitation Treatment on Micromechanical Properties of Amorphous Alloys

T. L. Tsaregradskaya$^{1}$, I. V. Plyushchay$^{1}$, V. V. Kozachenko$^{1}$, A. M. Kuryliuk$^{1}$, S. G. Rozouvan$^{1}$, A. I. Plyushchay$^{2}$

$^{1}$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 19.06.2020; final version - 16.12.2020. Download: PDF

Effect of ultrasonic cavitation treatment on micromechanical properties of Fe$_{76}$Ni$_4$Si$_6$B$_{14}$ amorphous alloy is investigated experimentally. As shown, a microhardness of the amorphous alloy after ultrasonic cavitation treatment with intensity (1–2) W/cm$^2$ is reduced by (10–28)%, which indirectly confirms the fact that crystalline phase part in the alloy is reduced by reducing frozen-in crystallization centres size. This fact is confirmed by atomic force microscope studies of the amorphous alloy surface morphology. The plasticizing effect of ultrasonic cavitation treatment on the amorphous alloy can be explained by dissolution of frozen crystallization centres in an amorphous matrix.

Key words: amorphous alloy, frozen-in crystallization centres, ultrasonic cavitation treatment, microhardness.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i03/0329.html

DOI: https://doi.org/10.15407/mfint.43.03.0329

PACS: 43.35.+d, 61.43.Dq, 62.20.fq, 64.70.pe, 81.40.Lm

Citation: T. L. Tsaregradskaya, I. V. Plyushchay, V. V. Kozachenko, A. M. Kuryliuk, S. G. Rozouvan, and A. I. Plyushchay, Effect of Ultrasonic Cavitation Treatment on Micromechanical Properties of Amorphous Alloys, Metallofiz. Noveishie Tekhnol., 43, No. 3: 329—337 (2021) (in Ukrainian)


REFERENCES
  1. I. G. Polotskij, Vzaimodeystvie Nesovershenstv Kristallicheskogo Stroeniya s Ultrazvukovymi Kolebaniyami v Metallakh. Metally, Elektrony, Reshetka [Interaction of Imperfections of the Crystal Structure with Ultrasonic Vibrations in Metals. Metals, Electrons, Lattice] (Ed. V. N. Gridnev) (Kyiv: Naukova Dumka: 1975), p. 389 (in Russian).
  2. D. L. Zhang, Prog. Mater. Sci., 49, Nos. 3-4: 537 (2004). Crossref
  3. Feng Luo, Fei Sun, Kangsen Li, Feng Gong, Xiong Liang, Xiaoyu Wu, and Jiang Ma, Mater. Res. Lett., 6, No. 10: 545 (2018). Crossref
  4. V. V. Niapomniashchaya and V. V. Rubanik, Vektor Nauki TSU, 41, No. 3: 90 (2017) (in Russian). Crossref
  5. M. A. Vasil'yev, V. A. Tin'kov, Yu. N. Petrov, S. M. Voloshko, G. G. Galstyan, V. T. Cherepin, and A. S. Khodakovskiy, Metallofiz. Noveishie Tekhnol., 35, No. 5: 667 (2013) (in Ukrainian).
  6. S. O. Bakai, M. B. Lazareva, K. S. Bakai, O. I. Volchok, and V. M. Gorbatenko, Problems of Atomic Science and Technology, 101, No. 1: 70 (2016).
  7. V. L. Lahnenko, Processes Casting, No. 5: 50 (2009).
  8. S. A. Bakai, A. A. Shcheretskiy, Ye. S. Bakai, O. I. Volchok, V. M. Gorbatenko, Problems of Atomic Science and Technology, 102, No. 2: 78 (2016).
  9. Fangping Liu, Xiao Liu, and Yan, IOP Conf. Series: Materials Science and Engineering 2018 (SAMSE December 17-18, 2018, Shanghai, China) 490: 052017. Crossref
  10. T. L. Tsaregradskaya, V. V. Kozachenko, A. M. Kuryliuk, O. V. Turkov, and G. V. Saenko, Journal of Nano- and Electronic Physics, 11, No. 3: 03031-1 (2019). Crossref
  11. V. I. Lysov, T. L. Tsaregradskaya, O. V. Turkov, and G. V. Saenko, International Conference on Nanotechnology and Nanomaterials NANO 2017: Nanooptics, Nanophotonics, Nanostructures, and Their Applications, p. 341. Crossref