Strain-Softening of Metastable Eutectic Alloys under Reloading in Microplasticity Range

V. F. Korshak, R. I. Vorontsova, Yu. I. Boyko

V. N. Karazin Kharkiv National University, 4 Svobody Sqr., UA-61022 Kharkiv, Ukraine

Received: 27.07.2020; final version - 31.12.2020. Download: PDF

The influence of microplastic deformation on the strength characteristics of the eutectic Sn–38% wt. Pb alloy is studied. The mechanical tests of alloy samples are carried out at the stretching up to relative elongations not exceeding 3$\cdot10^3$. The deformation of the samples is determined using strain gauge method. The experiments are carried out in the mode of active loading at room temperature at which the alloy shows superplastic properties. The alloy is studied in three different states, which differ in duration of natural aging. The obtained dependences of the stress on the value of the relative elongation of samples indicate a significant strain-softening of the studied alloy in contrast to the strengthening of metal materials usually observed under similar conditions of mechanical testing. In all cases, after unloading, significant compression of the samples is observed over a period of time, which indicates the presence of significant internal stresses in the material. The reasons for strain-softening are discussed taking into account previously obtained data on changes in internal friction and Young’s modulus of the alloy after cyclic deformation in the microplasticity range in the mode of resonant bending oscillations. As concluded, the alloy strain-softening is caused by the relaxation of internal stresses and structural-phase transitions under conditions of external loading of samples. The observed changes of strain-hardening coefficient can indicate the metastable phase state of the alloy and realization of initial stages of decay of supersaturated solid solutions, stimulated by external mechanical tensile stress, in all investigated cases.

Key words: strain-softening, reloading, eutectic alloy, superplasticity, internal stresses, phase transformations.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i03/0339.html

DOI: https://doi.org/10.15407/mfint.43.03.0339

PACS: 61.66.Dk, 62.20.fq, 62.40.+i, 64.60.My, 64.75.Nx, 81.16.Rf, 81.40.Lm

Citation: V. F. Korshak, R. I. Vorontsova, and Yu. I. Boyko, Strain-Softening of Metastable Eutectic Alloys under Reloading in Microplasticity Range, Metallofiz. Noveishie Tekhnol., 43, No. 3: 339—354 (2021) (in Ukrainian)


REFERENCES
  1. M. V. Grabskiy, Strukturnaya Sverkhplastichnost Metallov [Structural Superplasticity of Metals] (Moscow: Metallurgiya: 1975) (in Russian).
  2. I. I. Novikov and V. K. Portnoy, Sverkhplastichnost Splavov s Ultramelkim Zernom [Superplasticity of Alloys with Ultrafine Grain] (Moscow: Metallurgiya: 1981) (in Russian).
  3. A. A. Presnyakov and R. K. Aubakirova, Sverkhplastichnost Metallicheskikh Materialov [Superplasticity of Metal Materials] (Almaty: Nauka: 1982) (in Russian).
  4. O. A. Kaybyshev, Sverkhplastichnost Promyshlennykh Splavov [Superplasticity of Industrial Alloys] (Moscow: Metallurgiya: 1984) (in Russian).
  5. E. N. Chumachenko, O. M. Smirnov, and M. A. Tsepin, Sverkhplastichnost: Materialy, Teoriya, Tekhnologii [Superplasticity: Materials, Theory, Technologies] (Moscow: KomKniga: 2005) (in Russian).
  6. Terence G. Langdon, J. Mater. Sci., 44: 5998 (2009). Crossref
  7. A. Zhilyaev and A. Pshenichnyuk, Superplasticity and Grain Boundaries in Ultrafinegrained Materials (Cambridge: Cambridge International Science Publishing Ltd.: 2011). Crossref
  8. V. M. Arzhavitin and V. F. Korshak, Metallofiz. Noveishie Tekhnol., 23, No. 11: 1525 (2001) (in Russian).
  9. V. M. Arzhavitin, V. F. Korshak, and A. F. Sirenko, Fiz. Met. Metalloved., 94, No. 3: 80 (2002) (in Russian).
  10. V. M. Arzhavitin and V. F. Korshak, Fiz. Met. Metalloved., 97, No. 1: 96 (2004) (in Russian).
  11. V. F. Korshak, V. M. Arzhavitin, A. L. Samsonik, and P. V. Mateychenko, Izvestiya RAN. Seriya Fizicheskaya, 69, No. 9: 1374 (2005) (in Russian).
  12. V. F. Korshak and V. M. Arzhavitin, Fiz. Met. Metalloved., 100, No. 4: 96 (2005) (in Russian).
  13. V. S. Zolotarevskiy, Mekhanicheskie Svoystva Metallov [Mechanical Properties of Metals] (Moscow: Metallurgiya: 1983) (in Russian).
  14. V. F. Korshak, Yu. A. Shapovalov, A. L. Samsonik, and P. V. Mateychenko, Fiz. Met. Metalloved., 113, No. 2: 201 (2012) (in Russian). Crossref
  15. V. F. Korshak, Yu. A. Shapovalov, P. P. Pal'-Val', and P. V. Mateychenko, Izvestiya RAN. Seriya Fizicheskaya, 75, No. 10: 1428 (2011) (in Russian). Crossref
  16. K. Mori, K. N. Ishihara, and P. H. Shinghu, Mater. Sci. Eng., 78, Iss. 2: 157 (1986). Crossref
  17. V. F. Korshak, A. P. Kryshtal', P. V. Mateychenko, and A. F. Sirenko, Izvestiya RAN. Seriya Fizicheskaya, 71, No. 12: 1723 (2007) (in Russian). Crossref
  18. B. E. Warren and B. L. Averbakh, Sovremennye Fizicheskie Metody Issledovaniy v Metallovedenii [Modern Methods of Research in Metal Science] (Moscow: GONTI: 1958), p. 109 (in Russian).
  19. V. F. Korshak, Metallofiz. Noveishie Tekhnol., 39, No. 6: 839 (2017) (in Russian). Crossref
  20. V. F. Korshak, V. S. Krylovskiy, and R. I. Vorontsova, Abstr. VIII Int. Sci. Conf. 'Physical Phenomena in Solids' (Dec. 11-14, 2007) (Kharkiv: 2007), p. 9 (in Ukrainian).
  21. V. F. Korshak, Yu. A. Shapovalov, and N. N. Vaselenko, Metallofiz. Noveishie Tekhnol., 37, No. 12: 1633 (2015) (in Russian). Crossref
  22. Fizicheskoe Metallovedenie. T. 3. Fiziko-Mekhanicheskie Svoystva Metallov i Splavov [Physical Metal Science. Vol. 3. Physical and Mechanical Properties of Metals and Alloys] (Eds. R. W. Kahn and P. Haasen) (Moscow: Metallurgiya: 1987) (in Russian).