Structure of High-Entropy AlCoCrFeNi Alloy Obtained by Laser Alloying

V. V. Girzhon, V. V. Yemelianchenko, O. V. Smolyakov

Zaporizhzhya National University, 66 Zhukovsky Str., UA-69600 Zaporizhzhya, Ukraine

Received: 07.09.2020; final version - 22.12.2020. Download: PDF

The structural-phase state of the AlCoCrFeNi high-entropy alloy obtained by laser alloying of technically pure aluminium surface layers with a mixture of powders of pure elements Fe, Co, Ni, Cr in an equiatomic ratio is investigated by X-ray phase, X-ray spectral, and metallographic analyses. As shown, in the process of laser alloying the formation of a heterophase structure, which consists of an ordered multicomponent substitution solid solution based on b.c.c. lattice and Al$_{13}$(Ме)$_4$ monoclinic intermetallide, take place. As established, the formation of such a structure is a consequence of melt high cooling rates, high aluminium content and inhomogeneous distribution of chemical components in the surface and bottom layers of the laser alloying zone. The microhardness of the alloyed surface is 4.7 GPa, which is typical for high-entropy alloys of this system obtained by other methods. Additional reasons that may affect the high values of microhardness are analysed.

Key words: high-entropy alloy, laser alloying zone, chemical inhomogeneity, substitution solid solution, high cooling rates, phase composition.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i03/0399.html

DOI: https://doi.org/10.15407/mfint.43.03.0399

PACS: 61.80.Ba, 62.20.Qp, 64.60.My, 81.20.Vj, 81.40.Gh

Citation: V. V. Girzhon, V. V. Yemelianchenko, and O. V. Smolyakov, Structure of High-Entropy AlCoCrFeNi Alloy Obtained by Laser Alloying, Metallofiz. Noveishie Tekhnol., 43, No. 3: 399—406 (2021)


REFERENCES
  1. B. S. Murty, J. W. Yeh, and S. Ranganathan, High-Entropy Alloys (Butterworth Heinemann: 2014). Crossref
  2. C. Ng, S. Guo, J. Luan, S. Shi, and C. T. Liu, Intermetallics, 31: 165 (2012). Crossref
  3. Y. Zhang, High-Entropy Materials: A Brief Introduction (Singapore: Springer: 2019). Crossref
  4. X. H. Yan, J. S. Li, W. R. Zhang, and Y. Zhang, Mater. Chem. Phys., 210: 12 (2018). Crossref
  5. H. Zhang, Y. Z. He, X. M. Yuan, and Y. Pan, Appl. Surf. Sci., 256, No. 20: 5837 (2010). Crossref
  6. H. Assadi, S. Reutzel, and D. M. Herlach, Acta Mater., 54, No. 10: 2793 (2006). Crossref
  7. H. Zhang, Y. Pan, Y. Z. He, J. L. Wu, T. M. Yue, and S. Guo, The Minerals, Metals Materials Society, 66, No. 10: 2057 (2014). Crossref
  8. A. I. Belyaev, O. S. Bochvar, N. Ya. Buinov, N. I. Kolobnev, A. A. Kolpchev, L. L. Kostyukov, K. S. Lokhodaev, O. G. Senatorova, R. R. Romanova, E. A. Tkachenko, and I. N. Fridlyander, Metallovedenie Alyuminiya i Ego Splavov [Metallurgy of Aluminium and Its Alloys] (Moscow: Metallurgiya: 1987) (in Russian).
  9. J. Grin, U. Burkhardt, M. Ellner, and K. Peters, Crystalline Materials, 209, No. 6: 479 (1994). Crossref
  10. Binary Alloy Phase Diagrams (Eds. H. Okamoto, M. E. Schlesinger, and E. M. Mueller) (ASM International: 2016). Crossref
  11. V. Raghavan, J. Phase Equilib. Diff., 29, No. 6: 515 (2008). Crossref
  12. V. Raghavan, J. Phase Equilib. Diff., 33, No. 1: 55 (2012). Crossref
  13. V. Raghavan, J. Phase Equilib. Diff., 29, No. 2: 180 (2008). Crossref
  14. X. L. Liu, T. Gheno, B. B. Lindahl, G. Lindwall, B. Gleeson, and Z. K. Liu, PLoS ONE, 10, No. 4: 1 (2015). Crossref
  15. V. Raghavan, J. Phase Equilib. Diff., 27, No. 4: 372 (2006). Crossref
  16. P. Jeglič, S. Vrtnik, M. Bobnar, M. Klanjšek, B. Bauer, P. Gille, Yu. Grin, F. Haarmann, and J. Dolinšek, Phys. Rev. B, 82, No. 10: 104201 (2010). Crossref
  17. Y. F. Kao, T. J. Chen, S. K. Chen, and J. W. Yeh, J. Alloy Compd., 488, No. 1: 57 (2009). Crossref
  18. M. V. Karpets', O. M. Myslyvchenko, O. S. Makarenko, M. O. Krapivka, V. F. Horban', and A. V. Samelyuk, Problemy Tertya ta Znoshuvannya, 63, No. 2: 103 (2014) (in Ukrainian). Crossref
  19. Lazernye Tekhnologii Obrabotki Materialov: Sovremennye Problemy Fundamental'nykh Issledovaniy i Prikladnykh Razrabotok [Laser Technology of Materials Processing: Modern Problems of Fundamental Research and Applied Development] (Ed. B. Ya. Panchenko) (Moscow: Fizmatlit: 2009).