Heterogeneous Ordering of Oxygen Vacancies in Yttrium-Barium Cuprate

V. V. Shamaev$^{1}$, E. S. Zhitlukhina$^{2,3}$, N. M. Zalutska$^{3}$, K. O. Ochkan$^{4}$

$^{1}$Donetsk National Technical University, 2 Shybankov Sqr., UA-85300 Pokrovs’k, Ukraine
$^{2}$Donetsk Institute for Physics and Engineering Named after O. O. Galkin, NAS of Ukraine, 46 Nauky Ave., UA-03028 Kyiv, Ukraine
$^{3}$Vasyl’ Stus Donetsk National University, 21 600-richchya Str., UA-21021 Vinnytsia, Ukraine
$^{4}$Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 05.04.2021. Download: PDF

By the example of yttrium-barium cuprate, a superconductor with a high critical temperature, we show that the polar nature of complex transition-metal oxides leads to redistribution of the oxygen vacancies concentration in the near-surface region. As a result, a nanoscale region of the surface space charge, that serves as a potential barrier for charge carriers tunnelling into such oxide, is arisen.

Key words: complex oxides of transition metals, oxygen vacancies, local heterogeneity, memristive effects.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i06/0819.html

DOI: https://doi.org/10.15407/mfint.43.06.0819

PACS: 68.47.Gh, 68.65.-k, 73.20.At, 73.40.-c, 74.72.-h, 74.78.Na

Citation: V. V. Shamaev, E. S. Zhitlukhina, N. M. Zalutska, and K. O. Ochkan, Heterogeneous Ordering of Oxygen Vacancies in Yttrium-Barium Cuprate, Metallofiz. Noveishie Tekhnol., 43, No. 6: 819—830 (2021) (in Ukrainian)


REFERENCES
  1. T. Li, arXiv:2103:13595 (2021).
  2. F. Caravelli and J. P. Carbajal, Technologies, 6, No. 4: 118 (2018). Crossref
  3. L. Chua, Semicond. Sci. Technol., 29, No. 10: 42 (2014). Crossref
  4. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature, 453, No. 7191: 80 (2008). Crossref
  5. D. Panda, P. P. Sahu, and T. Y. Tseng, Nanoscale Res. Lett., 13, No. 1: 8 (2018). Crossref
  6. M. Reiner, T. Gigl, R. Jany, G. Hammerl, and C. Hugenschmidt, Phys. Rev. B, 97, No. 14: 144503 (2018). Crossref
  7. T. Plecenik, M. Tomášek, M. Belogolovskii, M. Truchly, M. Gregor, J. Noskovič, M. Zahoran, T. Roch, I. Boylo, M. Špankova, Š. Chromik, P. Kúš, and A. Plecenik, J. Appl. Phys., 111: 056106 (2012). Crossref
  8. M. Truchly, T. Plecenik, E. Zhitlukhina, M. Belogolovskii, M. Dvoranova, P. Kus, and A. Plecenik, J. Appl. Phys., 120, No. 18: 185302 (2016). Crossref
  9. H. Su and D. O. Welch, Supercond. Sci. Tech., 18, No. 1: 24 (2004). Crossref
  10. A. Gurevich and E. A. Pashitskii, Phys. Rev. B., 57, No. 21: 13878 (1998). Crossref
  11. M. Grajcar, A. Plecenik, M. Darula, and Š. Beňačka, Solid State Comm., 81, No. 2: 191 (1992). Crossref
  12. G. L. Larkins Jr., Q. Lu, W. K. Jones, R. J. Kennedy, and G. Chern, Physica C: Supercond., 173, Nos. 3-4: 201 (1991). Crossref
  13. A. Plecenik, M. Grajcar, P. Seidel, S. Takács, A. Matthes, M. Zuzcak, and Š. Beňačka, Physica C: Supercond., 301, Nos. 3-4: 234 (1998). Crossref
  14. E. Zhitlukhina, I. Devyatov, O. Egorov, M. Belogolovskii, and P. Seidel, Nanoscale Res. Lett., 11, No. 1: 58 (2016). Crossref
  15. X. D. Wu, B. Dolgin, G. Jung, V. Markovich, Y. Yuzhelevski, M. Belogolovskii, and Ya. M. Mukovskii, Appl. Phys. Lett., 90, No. 24: 242110 (2007). Crossref
  16. E. Zhitlukhina, M. Belogolovskii, and P. Seidel, IEEE Trans. Appl. Supercond., 28, No. 4: 1700205 (2018). Crossref