Effect of Atomic Substitutions on Electronic Structure of Pt$_{1-x}$Au$_x$MnSb Alloys ($x$ = 0–1)

V. N. Uvarov$^{1}$, N. V. Uvarov$^{1}$, S. A. Bespalov$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Presidium of the NAS of Ukraine, 54 Volodymyrs’ka Str., 01030 Kyiv, Ukraine

Received: 30.03.2021. Download: PDF

Using zone calculations in the FLAPW (the full-potential linearized augmented-plane-waves) model, the information on the energy, charge and spin characteristics of Pt$_{1-x}$Au$_x$MnSb ($x$ = 0–1) alloys is obtained. As established, the interatomic spatial electron density decreases, covalent bonds weaken, and the cohesive energies of the alloys decrease with an increase in the concentration of Au atoms in Pt$_{1-x}$Au$_x$MnSb alloys. As found, the dominant contribution to the formation of magnetic moments in Pt$_{1-x}$Au$_x$MnSb alloys is made by the 3$d$ electrons of manganese atoms. In alloys with $x$ = 0.25 and $x$ = 0.5, the total polarization of Fermi electrons is registered, which converts these alloys to the half-metallic state.

Key words: band-structure calculations, electronic structure, Heusler alloys, magnetic moments, polarized electron states, spintronics.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i06/0831.html

DOI: https://doi.org/10.15407/mfint.43.06.0831

PACS: 61.50.Lt, 71.15.Ap, 71.20.-b, 71.30.+h, 75.10.Lp, 75.25.-j, 85.75.-d

Citation: V. N. Uvarov, N. V. Uvarov, and S. A. Bespalov, Effect of Atomic Substitutions on Electronic Structure of Pt$_{1-x}$Au$_x$MnSb Alloys ($x$ = 0–1), Metallofiz. Noveishie Tekhnol., 43, No. 6: 831—842 (2021)


REFERENCES
  1. G. E. Bacon and J. S. Plant, J. Phys. F: Metal Phys., 1: 524 (1971). Crossref
  2. T. Graf, C. Felser, and Stuart S. P. Parkin, Progress in Solid State Chemistry, No. 39: 1 (2011). Crossref
  3. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, arXiv:cond-mat/0203534v3 19 Jul 2002, p. 1.
  4. C. Felser, G. H. Fecher, and B. Balke, Angew. Chem. Int. Ed., No. 46: 668 (2007). Crossref
  5. I. Galanakis and P. H. Dederichs, Lect. Notes Phys., 676: 1 (2005).
  6. M. J. Otto, R. A. M. van Woerden, P. J. van der Valk, J. Phys.: Condens. Matter, 1: 2341 (1989). Crossref
  7. M. J. Otto, H. Ftil, R. A. M. Van Woerden, J. Wijngaard, P. J. Van Der Valk, C. F. Van Bruggen, and C. Haas, J. Magn. Magn. Mater., 70: 33 (1987). Crossref
  8. R. B. Helmholdt, R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, J. Magn. Magn. Mater., 43: 249 (1984). Crossref
  9. K. H. J. Buschow, P. G. van Engen, and R. Jongebreur, J. Magn. Magn. Mater., 38: 1 (1983). Crossref
  10. P. J. Webster and K. R. A. Ziebeck, J. Magn. Magn. Mater., 15-18: 473 (1980). Crossref
  11. K. Watanabe, J. Phys. Soc. Jap., 28, No. 2: 302 (1970). Crossref
  12. B. R. K. Nanda and I. Dasgupta, J. Phys.: Condens. Matter, 17: 5037 (2005). Crossref
  13. Jung, H.-J. Koo, M.-H. Whangbo, J. Molecular Structure (Theochem), No. 527: 113 (2000). Crossref
  14. D. Orgassa, H. Fujiwara, T. C. Schulthess and W. H. Butler, Phys. Rev. B, 60, No. 19: 13237 (1999). Crossref
  15. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett., 50, No. 25: 2024 (1983). Crossref
  16. H. Masumoto and K. Watanabe, Trans. JIM, 17: 588 (1976). Crossref
  17. P. P. J. van Engelen, D. B. de Mooij, J. H. Wijngaard, K. H. J. Buschow, J. Magn. Magn. Mater., 130: 247 (1994). Crossref
  18. V. N. Uvarov, N. V. Uvarov, and S. A. Bespalov, Metallofiz. Noveishie Tekhnol., 38, No. 3: 305 (2016) (in Russian).
  19. V. N. Uvarov, N. V. Uvarov, S. A. Bespalov, and M. V. Nemoshkalenko, Ukr. J. Phys., 62, No. 2: 106 (2017). Crossref
  20. D. Singh, Plane Waves, Psedopotentials and LAPW Method (Kluwer Academic: 1994). Crossref
  21. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  22. P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, and Laurence D. Marks, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Austria, Wien: Techn. Universität: 2001).
  23. http://www.wien2k.at/reg_user/faq/
  24. B. R. K. Nanda and I. Dasgupta, J. Phys.: Condens. Matter, 15: 7307 (2003). Crossref
  25. V. N. Uvarov and N. V. Uvarov, Metallofiz. Noveishie Tekhnol., 39, No. 3: 309 (2017) (in Russian). Crossref
  26. J. Murrel, S. Kettle, and J. Tedder, Teoriya Valentnosti (Moscow: Mir: 1968) (in Russian).