Determination of Pressure in Helium Bubbles and Surface Energy of Nickel by Ferromagnetic Resonance Method

O. I. Spol’nik, A. Yu. Haydus’, L. M. Kaliberda

Kharkiv Petro Vasylenko National Technical University of Agriculture, 44 Alchevskykh Str., UA-61002 Kharkiv, Ukraine

Received: 29.10.2018; final version - 18.01.2021. Download: PDF

The data on the effect of pores surrounded by fields of elastic strains on the line width of ferromagnetic resonance (FMR) are experimentally obtained. For this purpose, FMR line widths are measured in nickel samples irradiated with accelerated helium ions and thereafter subjected to isochronous step annealing at different temperatures. As a result of annealing, an ensemble of helium bubbles with known concentration and size is created in the samples. Resonance measurements in these samples are revealed broadening of the FMR line, the value of which agrees well with the theory of broadening of the resonance line by stressed pores. This makes it possible to estimate the pressure of helium in the bubbles and the surface energy of nickel from the magnitude of this broadening.

Key words: ferromagnetic resonance, ion irradiation, pressure of gas, surface energy of nickel.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i06/0843.html

DOI: https://doi.org/10.15407/mfint.43.06.0843

PACS: 61.72.Qq, 61.80.Jh, 61.82.Bg, 68.03.Cd, 68.35.Md, 76.50.+g, 81.40.Ef

Citation: O. I. Spol’nik, A. Yu. Haydus’, and L. M. Kaliberda, Determination of Pressure in Helium Bubbles and Surface Energy of Nickel by Ferromagnetic Resonance Method, Metallofiz. Noveishie Tekhnol., 43, No. 6: 843—851 (2021) (in Ukrainian)


REFERENCES
  1. V. G. Baryakhtar, M. A. Savchenko, and V. V. Tarasenko, ZhETF, 51, No. 3: 936 (1966) (in Russian).
  2. V. G. Baryakhtar, M. A. Savchenko, and V. V. Tarasenko, ZhETF, 54, No. 5: 1603 (1968) (in Russian).
  3. A. S. Bulatov, V. G. Pinchuk, and M. B. Lazareva, Fiz. Met. Metalloved., 34, No. 5: 1066 (1972) (in Russian).
  4. V. G. Baryakhtar, R. I. Garber, and A. I. Spolnik, Soviet Physics-Solid State, 16, No. 8: 1506 (1975).
  5. A. I. Akhiezer, V. S. Boiko, and A. I. Spolnik, Fizika Tverdogo Tela, 16, No. 11: 3411 (1974) (in Russian).
  6. A. I. Akhiezer, V. V. Gann, A. I. Spolnik, Fizika Tverdogo Tela, 17, No. 8: 2340 (1975) (in Russian).
  7. A. I. Spolnik, A. N. Grigor'ev, and A. N. Moroz, Ukrayins'kyy Fizychnyy Zhurnal, 35, No. 6: 934 (1990) (in Russian).
  8. A. I. Spolnik and Z. A. Spolnik, Ukrayins'kyy Fizychnyy Zhurnal, 38, No. 12: 56 (1993) (in Russian).
  9. A. I. Spolnik, A. S. Abizov, I. V. Volchok, and M. A. Chegoryan, Dopovidi Natsional'noyi Akademiyi Nauk Ukrayiny, 11: 78 (2009) (in Russian).
  10. V. F. Zelenskiy, I. M. Neklyudov, and T. P. Chernyaeva, Radiatsionnye Defekty i Raspukhanie Metallov [Radiation Defects and Swelling of Metals] (Kyiv: Naukova Dumka: 1988) (in Russian).
  11. A. G. Zaluzhnyiy, Yu. N. Sokurskiy, and B. H. Tebus, Geliy v Reaktornykh Materialakh [Helium in Reactor Materials] (Moscow: Energoatomizdat: 1988) (in Russian).
  12. V. I. Bendikov, A. V. Nikitin, V. V. Ruzhitskiy, V. F. Ryibalko, and S. M. Hazan, J. Surface Investigation, No. 10: 67 (1996) (in Russian).
  13. H. Iwakiri, K. Yasunaga, K. Morishita, and N. Yoshida, J. Nucl. Mater., 283-287: 1134 (2000). Crossref
  14. A. N. Kalashnikov, I. I. Chernov, B. A. Kalin, and S. Yu. Binyukova, J. Nucl. Mater., 307-311: 362 (2002). Crossref
  15. I. M. Neklyudov and G. D. Tolstolutskaya, Problems of Atomic Science and Technology, Series 'Physics of Radiation Damage and Radiation Materials Science', No. 3: 3 (2003) (in Russian).
  16. S. Yu. Binyukova, I. I. Chernov, B. A. Kalin, and M'o Khtet Vin, Atomic Energy, 99: 550 (2005) (in Russian). Crossref
  17. V. N. Chernikov, H. Trinkaus, and H. Ullmaier, J. Nuclear Materials, 250, Iss. 2-3: 103 (1997). Crossref
  18. Shi-Hao Li, Jing-Ting Li, and Wei-Zhong Han, Materials, 12, Iss. 7: 1036 (2019). Crossref
  19. M. Thompson, Defekty i Radiatsionnye Povrezhdeniya v Metallakh [Defects and Radiation Damage in Metals] (Moscow: Mir: 1971) (in Russian).
  20. U. Valdre, Electron Microscopy in Material Science (New York and London: Academic Press: 1971).
  21. B. L. Eyre, J. Physics F: Metal Physics, 3, No. 2: 422 (1973). Crossref
  22. S. E. Donnelly, Radiat. Eff., 90: 1 (1985). Crossref
  23. L. G. Petrova, V. A. Aleksandrov, and S. I. Barabanov, Bulletin of Kharkov National Automobile and Highway University, 54: 60 (2011) (in Russian).
  24. C. A. Walsh, J. Yuan, and L. M. Brown, Phil. Mag. A, 80, Iss. 7: 1507 (2000). Crossref
  25. A. A. Griffith, Phil. Trans. R. Soc. Lond. A, 221: 163. (1921). Crossref
  26. J. Gilman, J. Appl. Phys., 31: No. 12: 2208 (1960). Crossref
  27. R. M. Digilov, S. N. Zadumkin, V. H. Kumyikov, and H. B. Hokonov, Fiz. Met. Metalloved., 28, No. 5: 523 (1976) (in Russian).
  28. W. Missol, Energiya Poverkhnosti Rozdela Faz v Metallakh [Surface Energy of Phase Separation in Metals] (Moscow: Metallurgiya: 1978) (in Russian).
  29. H. B. Hokonov, I. G. Shebzuhova, and T. M. Taova, Sposob Izmereniya Poverkhnostnogo Natyazheniya Tverdykh Tel [Method for Measuring the Surface Tension of Solids], Authors' Certificate 1356696 SSSR (Published 1984) (in Russian).
  30. T. M. Taova, B. H. Unezhev, and H. B. Hokonov, Ustroystvo dlya Izmereniya Poverkhnostnogo Natyazheniya Tverdogo Tela [Device for Measuring the Surface Tension of a Solid], Patent Russian Federation No. 2200313 (Published 2003) (in Russian).
  31. V. M. Jurov, Sposob Izmereniya Poverkhnostnogo Natyazheniya Magnitnykh Materialov [The Method of Measuring the Surface Tension of Magnetic Materials] Patent RK No. 58158 (Published 2009) (in Russian).
  32. V. M. Jurov, Eurasian Physical Technical Journal, 8, No. 1 (15): 10 (2011).
  33. H. B. Hokonov, T. M. Taova, I. G. Shebzuhova, V. K. Kumyikov, and B. B. Alchagirov, Electronic Journal, No. 2: 10 (2019) (in Russian).
  34. V. M. Jurov, V. S. Oleshko, and I. S. Pigovkin, Advances in Current Natural Sciences, No. 7: 88 (2012) (in Russian).
  35. Ch. Pul, Tekhnika EPR Spektroskopii [Technique of Electron-Paramagnetic Resonance in Spectroscopy] (Moscow: Mir: 1970) (in Russian).
  36. J. L. Strudel and J. Washburn, Philos. Mag., 9: 491 (1964). Crossref
  37. I. Lemahieu, D. Segers, L. Deschepper, L. Dorikens‐Vanpraet, M. Dorikens, L. Stals, C. Mommaert, and G. Severne, Cryst. Res. Technol., 22: No. 11: K210 (1987). Crossref
  38. B. A. Kalin, I. I. Chernov, A. N. Kalashnikov, and S. Yu. Binyukova, VANT, No. 4: 20 (2000) (in Russian).
  39. J. Ehrenberg, R. B. Behrisch, and M. U. Scherzer, Nuclear Instruments and Methods in Physics Research, 194: Iss. 1-3: 501 (1982). Crossref
  40. V. N. Chernikov, H. Trinkaus, P. Jung, and H. Ulmaier, J. Nucl. Mater., 170, Iss. 1: 31 (1990). Crossref
  41. B. N. Singh and H. Trinkaus, J. Nucl. Mater., 186, Iss. 2: 153 (1992). Crossref
  42. E. R. Hayward and A. P. Greenough, J. Institute of Metals, 88: 217 (1959).
  43. I. S. Grigoreva and E. Z. Meylihova, Fizicheskie Velichiny [Physical Quantities] (Moscow: Energoatomizdat: 1970) (in Russian).
  44. R. C. Tolman, J. Chemical Physics, 17, Iss. 3: 333 (1949). Crossref
  45. Yu. G. Frolov, Kurs Kolloidnoy Khimii. Poverkhnostnye Yavleniya i Dispersnye Sistemy [The Course of Colloid Chemistry. Surface Phenomena and Disperse Systems] (Moscow: Khimiya: 1982) (in Russian).
  46. T. V. Byikov and A. K. Schyokin, Neorganicheskie Materialy, 35, No. 6: 759 (1999) (in Russian).
  47. D. I. Zhuhovitskiy, Zhurnal Fizicheskoy Khimii, 75, No. 7: 1 (2001) (in Russian).