Investigation of Influence of Heat Treatment on Structure and Properties of Biocompatible Ti–18Nb–$x$Si Alloys

О. М. Shevchenko$^{1}$, L. D. Kulak$^{1}$, M. M. Kuzmenkо$^{1}$, O. Yu. Koval$^{1}$, А. V. Kоtkо$^{1}$, N. V. Ulyanchich$^{1}$, O. O. Piven$^{2}$, T. P. Ruban$^{2}$, S. O. Firstov$^{1}$

$^{1}$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine
$^{2}$Institute of Molecular Biology and Genetics, N.A.S. of Ukraine, 150 Zabolotnogo Str., UA-03143 Kyiv, Ukraine

Received: 18.03.2021. Download: PDF

The investigation of as-cast Ti–18Nb–$x$Si alloys with silicon content from 0.6 to 1.2% wt. is carried out. The formation of silicides at various heat treatment conditions (temperature and time), their distribution, growth and dissolution dynamics, as well as the effect on hardness and biological properties are studied. The greatest precipitation of silicides (Ti, Nb)$_3$Si occurs as a result of eutectoid decomposition of solid solution at 800–900°C. On quenching at $\leq$ 1000°C temperature range the silicide particles with sizes > 0.05 $\mu$m are precipitating mainly at the grain boundaries and defects of the structure, which do not affect the movement of dislocations under plastic deformation. So at these temperatures the alloys do not strengthen, their hardness is quite low. An exposure leads to an increase in the size of silicides and a further decrease in hardness. At higher quenching temperatures due to the precipitation of more dispersed and hard Ti$_5$Si$_3$ silicides at defects inside the martensitic plates, there is an increase in hardness as a result of the balance between dispersion hardening and a decrease in solid solution hardening because silicon is removed from the solution during silicide formation. When the cells culturing $in vitro$ on the samples of Ti–18Nb–$x$Si alloys, it is shown that alloying with silicon increases their bioactivity. The greatest cell proliferation is observed for the Ti–18Nb–1.2Si alloy, and that may indicate the effect of silicides on the biocompatibility.

Key words: structure of Ti–Nb–Si alloys, silicides, strengthening, biocompatibility.



PACS:, 64.75.Bc, 64.75.Nx, 81.30.Kf, 81.40.Cd, 81.40.Ef, 87.85.jj

Citation: О. М. Shevchenko, L. D. Kulak, M. M. Kuzmenkо, O. Yu. Koval, А. V. Kоtkо, N. V. Ulyanchich, O. O. Piven, T. P. Ruban, and S. O. Firstov, Investigation of Influence of Heat Treatment on Structure and Properties of Biocompatible Ti–18Nb–$x$Si Alloys, Metallofiz. Noveishie Tekhnol., 43, No. 7: 887—907 (2021) (in Ukrainian)

  1. Y. Zhang, D. Sun, J. Cheng, J. K. Hon Tsoi, and J. Chen, Regenerative Biomaterials, 7, No. 1: 119 (2020). Crossref
  2. R. Olivares-Navarrete, J. J. Olaya, C. Ramírez, and S. E. Rodil, Coatings, No. 1: 72 (2011). Crossref
  3. H. S. Kim, W. Y. Kim, and S. H. Lim, Scr. Mater., 54, No. 5: 887 (2006). Crossref
  4. W. Y. Kim, H. S. Kim, and I. D. Yeo, Mater. Sci. Forum, 510-511: 858 (2006). Crossref
  5. L. D. Kulak, N. A. Krapivka, G. E. Khomenko, V. U. Puchkova, and T. P. Tereschenko, Elektronnaya Mikroskopiya i Prochnost Materialov [Electron Microscopy and Strength of Materials] (Kiev: I. N. Franzevich Institute of Materials Science Problems, N.A.S.U.: 2006), Iss. 21, p. 38 (in Russian).
  6. A. E. Fisk, A. V. Demchyshyn, M. M. Kuzmenko, S. O. Firstov, and L. D. Kulak, Titanium Based Ceramic Reinforced Alloy for Use in Medical Implants: Patent 9,039,963 US. (2015).
  7. A. E. Fisk, A. V. Demchyshyn, L. D. Kulak, and M. M. Kuzmenko, Titanium Based Ceramic Reinforced Alloy: Patent 3 272 890 A1 EP. (2018).
  8. O. M. Shevchenko, L. D. Kulak, O. V. Datskevich, M. M. Kuzmenko, G. E. Khomenko, and S. O. Firstov, Dopovidi Natsionalnoyi Akademii Nauk Ukrayiny, No. 2: 62 (2015) (in Ukrainian). Crossref
  9. O. M. Shevchenko, L. D.Kulak, M. M. Kuzmenko, A. V. Kotko, and S. O. Firstov, Metallofiz. Noveishie Tekhnol., 39, No. 6: 823 (2017) (in Ukrainian). Crossref
  10. O. M. Shevchenko, L. D.Kulak, M. M. Kuzmenko, and S. O. Firstov, Metallofiz. Noveishie Tekhnol., 41, No. 3: 363 (2019) (in Ukrainian). Crossref
  11. O. M. Shevchenko, L. D. Kulak, M. M. Kuzmenko, and S. O. Firstov, Metallofiz. Noveishie Tekhnol., 42, No. 2: 237 (2020) (in Ukrainian). Crossref
  12. A. S. Ramos, C. A. Nunes, and G. C. Coelho, Materials Characterization, 56, No. 2: 107 (2006). Crossref
  13. A. M. S. Costa, G. F. Lima, G. Rodrigues, C. A. Nunes, G. C. Coelho, P. A. Suzuki, J. Phase Equilib. Diffus., 31: 22 (2010). Crossref
  14. O. M. Shevchenko, L. D. Kulak, M. M. Kuzmenko, and S. O. Firstov, Fiz.-Khim. Mekhanika Materialiv [Physicochemical Mechanics of Materials], No. 4: 107 (2019) (in Ukrainian).
  15. O. M. Shevchenko, L. D. Kulak, M. M. Kuzmenko, and S. O. Firstov, Mater. Sci., 55, No. 4: 577 (2020). Crossref
  16. S. E. Rodil, R. Olivares, H. Arzate, and S. Muhl, Diamond Relat. Mater., 12, Iss. 3-7: 931 (2003). Crossref
  17. S. A. Firstov, S. V. Tkachenko, and N. N. Kuzmenko, Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1: 14 (2009) (in Russian).
  18. S. Roy, S. V. Divinski, and A. Paul, Philos. Magazine, 94, No. 7: 683 (2014). Crossref
  19. M. Fiore, F. B. Neto, and C. R. F. Azevedo, Mater. Res., 19: 942 (2016). Crossref
  20. M. Fiore, F. B. Neto, C. R. F. Azevedo, REM - Int. Eng. J., 70, No. 2: 201 (2017). Crossref
  21. A. V. Dobromyslov and V. A. Elkin, Mater. Sci. Eng. A, 438-440: 324 (2006). Crossref
  22. J. W. Martin, Mikromekhanizmy Dispersionnogo Tverdeniya Splavov [Micromechanisms in Particle-Hardened Alloys] (Moscow: Metallurgiya: 1983) (in Russian).
  23. G. Lauer, M. Wiedmann-Al-Ahmad, J. E. Otten, U. Hubner, and S. W. Schmelzeisen, Biomaterials, 22, No. 20: 2799 (2001). Crossref
  24. C. Schmidt, D. Kaspar, M. R. Sarkar, L. E. Claes, and A. A. Ignatius, J. Biomed. Mater. Res., 63, No. 3: 252 (2002). Crossref
  25. D. M. Findlay, K. Welldon, G. J. Atkins, D. W. Howie, A. C. W. Zannettino, and D. Bobyn, Biomaterials, 25, No. 12: 2215 (2004). Crossref