Hydrogen Storage Properties of Ti$_{15.4}$Zr$_{30.2}$Mn$_{44}$V$_{5.4}$Сr$_5$ Alloy Produced by Induction and Arc Melting

V. A. Dekhtyarenko

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 22.02.2021; final version - 30.06.2021. Download: PDF

On the example of the alloy Ti$_{15.4}$Zr$_{30.2}$Mn$_{44}$V$_{5.4}$Сr$_5$, the technological scheme of producing massive ingots by the technique of induction melting in open Al$_2$O$_3$ crucibles, which can be used in industry, is developed. This scheme ensures the absence of significant interaction between the crucible material and the melt, while maintaining the allowable content of aluminium impurities in the alloy, and thus achieving the required structure, phase composition, and hydrogen storage properties.

Key words: induction melting, phase composition, Laves phase, hydrogenation, dehydrogenation, hydrogen capacity.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i08/1053.html

DOI: https://doi.org/10.15407/mfint.43.08.1053

PACS: 61.66.Dk, 61.72.S-, 64.75.-g, 68.43.Mn, 68.43.Nr, 82.30.Rs, 88.30.R-

Citation: V. A. Dekhtyarenko, Hydrogen Storage Properties of Ti$_{15.4}$Zr$_{30.2}$Mn$_{44}$V$_{5.4}$Сr$_5$ Alloy Produced by Induction and Arc Melting, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1053—1063 (2021)


REFERENCES
  1. G. Principi, F. Agresti, A. Maddalena, and S. L. Russo, Energy, 34: 2087 (2009). Crossref
  2. Bellosta von Colbe, J-R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, Noris Gallandat, David M. Grant, Matylda N. Guzik, Isaac Jacob, Emil H. Jensen, Torben Jensen, Julian Jepsen, Thomas Klassen, Mykhaylol V. Lototskyy, Kandavel Manickam, Amelia Montone, Julian Puszkiel, Sabrina Sartori, Drew A. Sheppard, Alastair Stuart, Gavin Walker, Colin J. Webb, Heena Yang, Volodymyr Yartys, Andreas Züttel, and Martin Dornheim, Int. J. Hydrogen Energy, 44: 7780 (2019). Crossref
  3. K. T. Moller, T.R. Jensen, E. Akiba, and H. W. Li, Prog. Nat. Sci., 27, 34: (2017). Crossref
  4. B. Viswanathan, Energy Sources, Hydrogen Storage (Elsevier: 2017), p. 185. Crossref
  5. S. S. Srinivasan and D. E. Demirocak, Metal Hydrides used for Hydrogen Storage, in Nanostructured Materials for Next-Generation Energy Storage and Conversion: Hydrogen Production, Storage, and Utilization (Eds. Y.-P. Chen, S. Bashir, and J. L. Liu (Berlin: Springer: 2017), p. 225. Crossref
  6. V. N. Verbetsky and S. V. Mitrokhin, Materialovedenie, 1: 48 (2009) (in Russian).
  7. V. A. Yartysa, M. V. Lototskyy, E. Akiba, R. Albert, and V. E. Antonov, Int J Hydrogen Energy, 44: 7809 (2019). Crossref
  8. A. A. Shkola, Metallofiz. Noveishie Tekhnol., 38, No. 9: 1213 (2016) (in Ukrainian). Crossref
  9. A. Narvaez, Low Cost, Metal Hydride Based Hydrogen Storage System for Forklift Applications (Phase II). US DOE Ann. Merit Rev. Meeting (June 18, 2014) Project ST 095.
  10. P. Lv, Z. Liu, A. K. Patel, X. Zhou, and J. Huot, Metals Mater. International, 27: 1346 (2021). Crossref
  11. M. Lototskyy, I. Tolj, Y. Klochko, M. W. Davids, D. Swanepoel, and V. Linkov, Int. J. Hydrogen Energy, 45: 7958 (2020). Crossref
  12. P. Pei, X. P. Song, J. Liu, G. L. Chen, X. B. Qin, and B. Y. Wang, Int. J. Hydrogen Energy, 34, No 19: 8094 (2009). Crossref
  13. J. H. Kim, H. Lee, K. T. Hwang, and J. S. Han, Int. J. Hydrogen Energy, 34, No. 23: 9424 (2009). Crossref
  14. M. Kazemipour, H. Salimijazi, A. Saidi, A. Saatchi, and A. Arefarjmand, Int. J. Hydrogen Energy, 39, Iss. 24: 12784 (2014). Crossref
  15. S. Suwarno, J. K. Solberg, V. A. Yartys, and B. Krogh, J. Alloys Compd., 509: S775 (2011). Crossref
  16. P. Pei, X. P. Song, J. Liu, M. Zhao, and G. L. Chen, Int. J. Hydrogen Energy, 34, No. 20: 8597 (2009). Crossref
  17. C. Y. Seo, J. H. Kim, P. S. Lee, and J. Y. Lee, J. Alloys Compd., 348: 252 (2003). Crossref
  18. V. A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol., 41, No. 10: 1283 (2019). Crossref
  19. G. F. Kobzenko and A. A. Shkola, Materials Diagnostics, 56: 41 (1990) (in Russian).
  20. O. M. Ivasishin, V. T. Cherepin, V. N. Kolesnik, and M. M. Gumenyuk, Instrumentation and Experimental Technique, 3: 147 (2010) (in Russian).
  21. E. A. Anikina and V. N. Verbetsky, Int. J. Hydrogen Energy, 36, No. 1: 1344 (2011). Crossref
  22. J. R. Johnson, J. Less-Common Met., 73: 345 (1980). Crossref
  23. J. Bodega, J. F. Fernández, F. Leardini, J. R. Ares, and C. Sánchez, J. Phys. Chem. Solids, 72, No. 11: 1334 (2011). Crossref
  24. V. A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol., 37, No. 5: 683 (2015) (in Russian). Crossref
  25. S. V. Mitrokhin, T. N. Smirnova, V. A. Somenkov, V. P. Glazkov, and V. N. Verbetsky, J. Alloys Compd., 356-357: 80 (2003). Crossref