Effect of Ga Dopants on Oxidation Behaviour of YCu Compounds

O. I. Nakonechna, M. V. Tymoshenko, Yu. O. Titov, N. N. Belyavina

Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine

Received: 21.12.2020; final version - 08.06.2021. Download: PDF

Kinetics of isothermal (500, 600, and 650°C) oxidation of YCu$_{1-x}$Ga$_x$ (0 $\leq x \leq$ 0.3) solid solution powders (50 $\mu$m of size) on the base of YCu compound is studied by the periodic weighment method as well as by XRD phase analysis. Features of oxidation mechanism of these intermetallic powders are revealed, including two stages of oxidation process. The initial stage of oxidation is characterized by the decomposition of the YCu$_{1-x}$Ga$_x$ solid solution into Y(Cu, Ga)$_2$ phase and individual metals with gradual formation of a stable oxide scale (containing Y$_2$O$_3$ mainly). The second stage of oxidation is characterized by oxidation of the Y(Cu, Ga)$_2$ phase with formation of both copper and gallium oxides. This polyphase oxide scale forms significantly retards either the diffusion of atmospheric oxygen atoms along the grain boundaries or the oxidation. In a whole, the oxidation rate of the YCu$_{1-x}$Ga$_x$ solid solution decreases with an increase in the gallium content, while the apparent activation energy of oxidation increases. That is, gallium dopants increase the resistance to high-temperature oxidation of the YCu phase under its annealing at 500–650°C in air.

Key words: intermetallic, activation energy, oxidation rate, weight gain method, X-ray powder diffraction.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i08/1065.html

DOI: https://doi.org/10.15407/mfint.43.08.1065

PACS: 61.05.cp, 61.72.S-, 64.75.Lm, 64.75.Nx, 81.07.Bc, 81.20.Ev, 81.40.Ef

Citation: O. I. Nakonechna, M. V. Tymoshenko, Yu. O. Titov, and N. N. Belyavina, Effect of Ga Dopants on Oxidation Behaviour of YCu Compounds, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1065—1077 (2021)

  1. K. Gschneidner, A. Russell, A. Pecharsky, J. Morris, Z. Zhang, T. Lograsso, D. Hsu, C. H. Chester Lo, Y. Ye, A. Slager, and D. Kesse, Nat. Mater., 2: 587 (2003). Crossref
  2. A. M. Russell, Z. Zhang, K. A. Gschneidner Jr., T. A. Lograsso, A. O. Pecharsky, A. J. Slager, and D. C. Kesse, Intermetallics, 13: 565 (2005). Crossref
  3. S. H. Williams, In-Situ Neutron Diffraction Analysis of Deformation Behaviour of Ductile Rare-Earth Intermetallic YCu (Disser. for PhD) (Iowa: Iowa State University: 2009). Crossref
  4. A. T. Becker, The Yield Strength and Flow Stress Anomaly in B2 Yttrium Copper (Disser. for PhD) (Iowa: Iowa State University: 2010). Crossref
  5. Z. Zhang, A. M. Russell, S. B. Biner, K. A. Gschneidner, and C. C. H. Lo, Intermetallics, 13, No. 5: 559 (2005). Crossref
  6. M. Dashevskyi, O. Boshko, O. Nakonechna, and N. Belyavina, Metallofiz. Noveishie Tekhnol., 39, No. 4: 541 (2017). Crossref
  7. M. Dashevskyi, N. Belyavina, O. Boshko, L. Kapitanchuk, O. Nakonechna, and S. Revo, Adv. Powder Technol., 29, No. 5: 1106 (2018). Crossref
  8. Y. Zhu, K. Mimura, J.-W. Lim, M. Isshiki, and Q. Jiang, Metallurgical Materials Transactions A, 37: 1231 (2006). Crossref
  9. D. Serafin, W. J. Nowak, and B. Wierzba, Applied Surface Science, 476: 442 (2019). Crossref
  10. H. J. Borchardt, J. Inorganic and Nuclear Chemistry, 26, No. 5: 771 (1964). Crossref
  11. O. N. Carlson, F. A. Schmidt, and R. L. Wells, A Study of the High-Temperature Air Oxidation of Yttrium Metal. Ames Laboratory Technical Reports (Iowa: Iowa State University: 1960).
  12. K. J. Qiu, W. J. Lin, F. Y. Zhou, H. Q. Nan, B. L. Wang, L. Li, J. P. Lin, Y. F. Zheng, and Y. H. Liu, Mater. Sci. Eng. C, 34: 474 (2014). Crossref
  13. H. F. Li, K. J. Qiu, W. Yuan, F. Y. Zhou, B. L. Wang, L. Li, Y. F. Zheng, and Y. H. Liu, Scientific Reports, 6: 37428 (2016). Crossref
  14. X. Liu, S. Chen, J. K. Tsoi, and J. P. Matinlinna, Regenerative Biomaterials, 4, No. 5: 315 (2017). Crossref
  15. N. Belyavina, V. Markiv, and O. Nakonechna, J. Alloys and Compounds, 541: 288 (2012). Crossref
  16. N. N. Belyavina, V. Ya. Markiv, M. V. Mathieu, and O. I. Nakonechna, J. Alloys and Compounds, 523: 114 (2012). Crossref
  17. V. K. Pecharsky and P. Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials (New York: Springer: 2009).
  18. J. W. Christian, The Theory of Transformations in Metals and Alloys, ch. 1: 1 (2002). Crossref
  19. L. Kaufman and B. Ditchek, J. Less-Common Metals, 168, Iss. 1:115 (1991). Crossref
  20. F. Saidi, M. K. Benabadji, H. I. Faraoun, and H. Aourag, Computational Materials Science, 89: 176 (2014). Crossref
  21. T. Takahashi, T. Yamane, Y. Minamino, and T. Kimura, J. Material Science Letters, 8: 882 (1989). Crossref
  22. A. R. Miedema, J. Less-Common Metals, 46, Iss. 1: 67 (1976). Crossref
  23. O. Nakonechna, M. Dashevskyi, A. Kurylyuk, N. Belyavina, and V. Makara, Metallofiz. Noveishie Tekhnol., 42, No. 5: 695 (2020). Crossref
  24. I. A. Hassan, S. Sathasivam, H. U. Islam, S. P. Nair, and C. J. Carmalt, RSC Advances, 7, No. 1: 551 (2017). Crossref