Combined Electrospark Running-in Coatings of Bronze Parts. Part 1. Structure and Mechanical Properties

O. P. Gaponova$^{1}$, V. B. Tarelnyk$^{2}$, V. S. Martsynkovskyy$^{2}$, Ie. V. Konoplianchenko$^{2}$, V. I. Melnyk$^{3}$, V. M. Vlasovets$^{3}$, O. A. Sarzhanov$^{2}$, N. V. Tarelnyk$^{2}$, M. O. Mikulina$^{2}$, A. D. Polyvanyi$^{2}$, G. V. Kirik$^{1}$, A. B. Batalova$^{2}$

$^{1}$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine
$^{2}$Sumy National Agrarian University, 160 Gerasym Kondratiev Str., UA-40021 Sumy, Ukraine
$^{3}$Kharkiv Petro Vasylenko National Technical University of Agriculture, 44 Alchevskykh Str., UA-61002 Kharkiv, Ukraine

Received: 04.03.2021; final version - 28.05.2021. Download: PDF

The article presents the results of studies of the surface layers’ quality (microstructure, microhardness, roughness, and continuity) of BrO10S10 bronze specimens with combined electrospark coatings (CEC). The coatings of three series are investigated: the 1$^{\textrm{st}}$ series prepared without sulfurizing (Ag $\to$ Pb $\to$ Ag і Ag $\to$ Sn $\to$ Ag), the 2$^{\textrm{nd}}$—included a deposition of sulphur in the form of a sulphuric ointment to the surface to be treated before silvering (S + Ag $\to$ Pb $\to$ S + Ag і S + Ag $\to$ Sn $\to$ S + Ag), and the 3$^{\textrm{rd}}$—included the application of sulphuric ointment to the surface to be treated before the next stage of electrospark alloying (S + Ag $\to$ S + Pb $\to$ S + Ag і S + Ag $\to$ S + Sn $\to$ S + Ag). As found, on samples of the 1$^{\textrm{st}}$ series, with an increase in the discharge energy ($W_{\textrm{р}}$), the thickness of the CEC increases from 0.27 to 2.9 mm, while the microhardness is in the range of 8–140 and 130–183 MPa for coatings with lead and tin, respectively, roughness $Rz$ = 8.5–10.0 $\mu$m. For samples of the 2$^{\textrm{nd}}$ series, with an increase in $W_{\textrm{р}}$, the thickness of the CEC increases from 0.19 to 1.3 mm, the microhardness is in the range of 80–180 MPa, and the roughness $Rz$ = 5.5–7.5 $\mu$m. The continuity for all samples is 100%. As shown, the CECs on samples of the 3$^{\textrm{rd}}$ series are destroyed. The CECs formed in the sequence S + Ag $\to$ Pb $\to$ S + Ag and S + Ag $\to$ Sn $\to$ S + Ag are recommended for practical application, if their thickness is sufficient for subsequent technological impact by any known method (blade treatment, non-abrasive ultrasonic finishing, $etc.$).

Key words: bronze bearing, running-in coating, combined electrospark coatings, friction force, wear.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i08/1121.html

DOI: https://doi.org/10.15407/mfint.43.08.1121

PACS: 62.20.Qp, 68.35.Ct, 68.35.Gy, 68.55.J-, 68.55.Ln, 81.15.Rs

Citation: O. P. Gaponova, V. B. Tarelnyk, V. S. Martsynkovskyy, Ie. V. Konoplianchenko, V. I. Melnyk, V. M. Vlasovets, O. A. Sarzhanov, N. V. Tarelnyk, M. O. Mikulina, A. D. Polyvanyi, G. V. Kirik, and A. B. Batalova, Combined Electrospark Running-in Coatings of Bronze Parts. Part 1. Structure and Mechanical Properties, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1121—1138 (2021) (in Ukrainian)


REFERENCES
  1. M. N. Ivanov, Detali Mashin (Moscow: Vysshaya Shkola: 1991) (in Russian).
  2. V. Tarelnyk, V. Martsynkovskyy, and A. Dziuba, Appl. Mech. Mater., 630: 388 (2014). Crossref
  3. U. Ozsarac, F. Findik, and M. Durman, Mater. Design, No. 28: 345 (2007). Crossref
  4. J. P. Pathak and S. N. Tiwari, Wear, 155, Iss. 1: 37 (1992). Crossref
  5. A. V. Korablin and A. F. Safiullin, Vestnik AGTU. Ser.: Morskaya Tekhnika i Tekhnologiya, No. 2: 111 (2013) (in Russian).
  6. A. P. Perekrestov and V. A. Chanchikov, Vestnik AGTU. Ser.: Morskaya Tekhnika i Tekhnologiya, No. 2: 147 (2013) (in Russian).
  7. A. P. Perekrestov and A. A. Sycheva, Protivoiznosnaya Prisadka: Patent RF No. 2276681 (Publ. 20.05.2006) (in Russian).
  8. V. I. Moschenok, D. B. Glushkova, and E. A. Nesterenko, Vestnik HNADU, No. 38: 48 (2007) (in Russian).
  9. J. E. Mahan, Physical Vapour Deposition of Thin Films (John Wiley & Sons: 2000).
  10. A. Kh. Valeyeva, I. Sh. Valeyev, and R. F. Fazlyakhmetov, Pis'ma o Materialakh, 4, No. 3: 134 (2014) (in Russian).
  11. T. V. Mosina, A. D. Panasyuk, and A. I. Yuga, Poroshkovaya Metallurgiya, No. 9/10: 104 (1999) (in Russian).
  12. K. Song, Y. Zhou, P. Zhao, Y. Zhang, and N. Bai, Acta Metall. Sinica (English Letters), 26, No. 2: 199 (2013). Crossref
  13. S. Scudino, C. Unterdörfer, K. G. Prashanth, H. Attar, N. Ellendt, V. Uhlenwinkel, and J. Eckert, Mater. Lett., 156: 202 (2015). Crossref
  14. Ming-Wen Chen, Wen-Long Zhang, Long-Fei Zuo, Bin Hou, and Zi-Dong Wang, Proc. of the 13th IEEE International Conference on Nanotechnology Beijing (August 5-8, 2013) (Beijing, China: 2013), p. 590.
  15. Z. Wang, X. Wang, Q. Wang, I. Shih, and J. J. Xu, Nanotechnology, 20, No. 7: 075605 (2009). Crossref
  16. S. Aoyama and R. Urao, J. Japan Institute of Metals, 74, No. 1: 49 (2010) (in Chinese). Crossref
  17. I. V. Khomskaya, V. I. Zel'dovich, A. V. Makarov, A. E. Kheyfets, N. Yu. Frolova, and Ye. V. Shorokhov, Pisma o Materialakh, 3: 150 (2013) (in Russian).
  18. Saitoh Yasushi and Shibayama Takayuki, Method of Producing Copper-Base Sintered Bearing Material: Patent No. 6821477 US (Publ. 23.11.2004).
  19. Saitou Yasushi, Inoue Eisaku, Fujita Masahito, and Shibayama Takayuki, Copper-Based, Sintered Sliding Material and Method of Producing Same, Patent 6767648 US (Publ. 27.07.2004).
  20. Sakai Kenji, Inoue Eisaku, Kurimoto Satoru, Yamamoto Koichi, and Shibayama Takayuki, Composite Sliding Material, Patent No. 6602615 US (Publ. 05.08.2003).
  21. X. Chen, Z. Wang, D. Ding, H. Tang, L. Qiu, X. Luo, and G. Shi, Mater. Design, 66, Part A: 60 (2015). Crossref
  22. L. Yu and C.-C.Jia, Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 23, No. 8: 2169 (2013).
  23. O. Yilmaz and H. Turhan, Wear, 249, No. 10-11: 901 (2001). Crossref
  24. G. Cui, Q. Bi, M. Niu, J. Yang, and W. Liu, Tribology International, 60: 25 (2013). Crossref
  25. S. Chen, D. An, Y. Bi, J. Liang, and C. Liu, J. Composite Mater., 48, No. 13: 1561 (2014). Crossref
  26. B. Juszczyk, J. Kulasa, S. Malara, M. Czepelak, W. Malec, B. Cwolek, and Ł. Wierzbicki, Archives Metall. Mater., 59, No. 2: 615 (2014). Crossref
  27. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Y. Filonenko, Procedia Engineering, 39: 157 (2012). Crossref
  28. V. B. Tarel'nik, E. V. Konoplyanchenko, P. V. Kosenko, and V. S. Martsinkovskii, Chem. Petrol. Eng., 53, Iss. 7-8: 540 (2017). Crossref
  29. D. N. Korotayev and Ye. V. Ivanova, Perspektivnyye Materialy, No. 2: 38 (2011) (in Russian).
  30. S. A. Mezentsov, V. N. Lyasnikov, and I. Yu. Gots, Vestnik SGTU, No. 4 (81): 107 (2015) (in Russian).
  31. I. A. Podchernyayeva, A. D. Panasyuk, and S. S. Zatulovskiy, Sverkhtvyordye Materialy, No. 6: 50 (2003) (in Russian).
  32. V. B. Tarelnik, O. P. Gaponova, E. V. Konoplyantschenko, N. S. Yevtushenko, and V. A. Gerasimenko, Metallofiz. Noveishie Tekhnol., 40, No. 6: 795 (2018) (in Russian).
  33. V. B. Tarel'nik, A. V. Paustovskii, Y. G. Tkachenko, V. S. Martsinkovskii, A. V. Belous, E. V. Konoplyanchenko, and O. P. Gaponova, Surf. Eng. Appl. Electrochem., 54: 147 (2018). Crossref
  34. V. B. Tarel'nik, A. V. Paustovskii, Y. G. Tkachenko, V. S. Martsinkovskii, E. V. Konoplyanchenko, and B. Antoshevskii, Surf. Eng. Appl. Electrochem., 53: 285 (2017). Crossref
  35. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petrol. Eng., 53: 114 (2017). Crossref
  36. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petrol. Eng., 53: 266 (2017). Crossref
  37. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petrol. Eng., 53: 385 (2017). Crossref
  38. V. B. Tarelnyk, O. P, Gaponova, and Ye. V. Konoplianchenko, V. S. Martsynkovskyy, N. V. Tarelnyk, and O. O. Vasylenko, Metallofiz. Noveishie Tekhnol., 41, No. 1: 47 (2019).
  39. B. Antoszewski and V. Tarelnik, Appl. Mech. Mater., 630: 301 (2014). Crossref
  40. V. Tarelnyk and V. Martsynkovskyy, Appl. Mech. Mater., 630: 397 (2014). Crossref
  41. Detali Mashin (Ed. N. S. Acherkan) (Moscow: Izdatel'stvo Mashinostroitel'noy i Sudostroitel'noy Literatury: 1954), book 2 (in Russian).
  42. T. V. Mosina, A. D. Panasyuk, A. I. Yuga, and O. N. Grigor'yev, Poroshkovaya Metallurgiya, No. 9/10: 104 (1999) (in Russian).
  43. V. B. Tarel'nik, B. Antoshevskiy, V. S. Martsinkovskiy, P. Karp, and A. V. Dzyuba, Kompressornoe i Energeticheskoe Mashinostroenie, No. 1: 39 (2015) (in Russian).
  44. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, Ie. Konoplianchenko, A. Belous, V. Gerasimenko, and M. Zakharov, 15th Int. Sci. Eng. Conf. Hermetic Sealing, Vibration Reliability and Ecological Safety of Pump and Compressor Machinery, HERVICON+PUMPS (Sep. 5-8, 2017, Sumy), vol. 233, p. 012048. Crossref
  45. B. A. Kolachev, V. N. Yelagin, and V. A. Livanov, Metallovedenie i Termicheskaya Obrabotka Tsvetnykh Metallov i Splavov (Moscow: MISiS: 2001) (in Russian).
  46. V. S. Chirkin, Teplofizicheskie Svoystva Materialov Yadernoy Tekhniki (Moscow: Atomizdat: 1967) (in Russian).