Peculiarities of Structure Formation of Welded Joint during Underwater Welding at External Electromagnetic Effect

S. Yu. Maksymov, O. O. Prilipko, O. M. Berdnikova, I. I. Alekseienko, Ye. V. Polovetskiy

E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 07.07.2019; final version - 13.04.2021. Download: PDF

Water medium harms the quality of welded joints and their mechanical properties. One of the effective ways for solving this problem is the application of the effect of external electromagnetic field on a liquid metal pool. The aim of carried investigations is the determination of the efficiency of use of external electromagnetic effect for the regulation of structural transformations in wet underwater welding with flux-cored wire. As determined, the width of crystalline particles can be reduced nearly two times and grains of the weld metal and heat affected zone close to a fusion line can be 1.3–1.4 time refined. As shown, the application of external electromagnetic effect prevents the appearance of gradients of grain size along the fusion line from face to weld root.

Key words: underwater welding, flux-cored wire, external electromagnetic field, heat affected zone, structure of weld metal.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i09/1167.html

DOI: https://doi.org/10.15407/mfint.43.09.1167

PACS: 07.55.Db, 61.72.-y, 61.82.Bg, 62.20.-x, 81.20.Vj, 81.40.Wx

Citation: S. Yu. Maksymov, O. O. Prilipko, O. M. Berdnikova, I. I. Alekseienko, and Ye. V. Polovetskiy, Peculiarities of Structure Formation of Welded Joint during Underwater Welding at External Electromagnetic Effect, Metallofiz. Noveishie Tekhnol., 43, No. 9: 1167—1173 (2021)


REFERENCES
  1. J. Łabanowski, D. Fydrych, and G. Rogalski, Advances in Materials Science, 8, Iss. 3: 11 (2008). Crossref
  2. Kunthlesh Kumar and Rickramjeet Singh, J. Mechanical and Civil Engineer-ing, 1, Iss. 12: 28 (2015).
  3. Harish Kumar Patel, Vipin Kumar Patel, Md. Gufran, and Rajkumar Bareth, Int. J. Research, 3, Iss. 01: 493 (2016).
  4. Mayank Chandra Joshi, Deepak Singh Rautela, Rajat Chauhan, and Sumit Suyal. J. Mechanical and Civil Engineering, 13, Iss. 5: 74 (2016). Crossref
  5. Duo Liu, Ning Guo, Changsheng Xu, Hongliang Li, Ke Yang, and Jicai Feng, J. Materials Engineering and Performance, 26, Iss. 5: 23508 (2017). Crossref
  6. Ning Guo, Duo Liu, Wei Guo, Haixin Li, and Jicai Feng, Materials Design, 77: 25 (2015). Crossref
  7. D. Fydrych, A. Swierczynska, G. Rogalski, and J. Labanowski, Advances in Materials Science, 16, No. 4: 5 (2016). Crossref
  8. R. N. Ryzhov, S. Yu. Maksimov, and E. A. Prilipko, Bulletin of NTUU 'KPI', No. 48: 226 (2006) (in Russian).
  9. S. Yu. Maksimov, V. I. Kozhukhar, R. N. Ryzhov, and E. A. Prilipko, Paton Welding J., No. 11: 49 (2004).
  10. N. V. Zaytseva, S. M. Zakharov, S. Yu. Maksimov, and E. A. Prilipko, Metallofiz. Noveishie Tekhnol., 31, No. 11: 1589 (2009) (in Russian).